
NodeMD: Diagnosing Node-Level Faults in Remote
Wireless Sensor Systems

Veljko Krunic, Eric Trumpler, Richard Han
Department of Computer Science
University of Colorado at Boulder

krunic@ieee.org, Eric.Trumpler@colorado.edu, Richard.Han@colorado.edu

ABSTRACT
Software failures in wireless sensor systems are notoriously diffi-

cult to debug. Resource constraints in wireless deployments sub-
stantially restrict visibility into the root causes of node-level system
and application faults. At the same time, the high costs of deploy-
ment of wireless sensor systems often far exceed the cumulative
costs of all other sensor hardware, so that software failures that
completely disable a node are prohibitively expensive to repair in
real world applications, e.g. by on-site visits to replace or reset
nodes. We describe NodeMD, a deployment management system
that successfully implements lightweight run-time detection, log-
ging, and notification of software faults on wireless mote-class de-
vices. NodeMD introduces a debug mode that catches a failure be-
fore it completely disables a node and drops the node into a stable
state that enables further diagnosis and correction, thus avoiding
on-site redeployment. We analyze the performance of NodeMD on
a real world application of wireless sensor systems.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—diagnos-
tics, distributed debugging, error handling and recovery, tracing;
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—wireless communication

General Terms
Design, Experimentation, Management, Performance, Reliability

Keywords
Diagnosis, Software Fault, Wireless Sensor Networks, Deployment

1. INTRODUCTION
The vision of wireless sensor networks (WSNs) typically con-

sists of a large number of very low cost sensor nodes that can be
spread over a wide area to collect environmental data and relay that
data back to a remote database or server via a self-organizing wire-
less mesh network. WSNs are often deployed in distant rugged

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’07, June 11–13, 2007, San Juan, Puerto Rico, USA.
Copyright 2007 ACM 978-1-59593-614-1/07/0006 ...$5.00.

environments, e.g. Great Duck Island off the coast of Maine [2],
around wildfires in the Bitterroot National Forest in Idaho [3], and
surrounding an active volcano in Ecuador [4]. These types of de-
ployments are expensive and sometimes even dangerous to deploy-
ment personnel. For example, in the FireWxNet [3] deployment, a
helicopter was used by fire personnel to deploy nodes on three dif-
ferent mountains, in some cases requiring the firefighters to climb
down the mountain to place the nodes.

Compounding the difficulty of WSN deployments is that soft-
ware bugs are inevitably encountered in the field, following a fa-
miliar theme that has been experienced all too commonly in other
deployed software systems. Commercial applications and operat-
ing systems typically have large quality-control resources devoted
to testing of software prior to deployment, yet still encounter soft-
ware bugs in the field that require frequent patching. Despite ex-
haustive testing, commercial handheld devices with embedded soft-
ware such as cell phones and wireless PDAs continue to suffer
from software glitches during operation. As some well publicized
software failures during space missions are showing (e.g. Mars
PathFinder [15, 28]), software errors are a fact of life even for
NASA, which has considerable resources at its disposal for testing
prior to launching a mission. Our expectation is that WSN appli-
cations will face similar difficulties with software bugs that occur
in the field. Moreover, we expect these problems to be exacer-
bated in WSNs by two factors: WSN systems typically are limited
by having much scarcer resources available for testing than com-
mercial and NASA-funded systems; and the data-driven nature of
WSNs can create an unexpected fault-inducing combination of in-
puts that is difficult to forecast during limited lab testing. Indeed,
our own experiences deploying FireWxNet confirmed that software
bugs arose during our deployment despite our best efforts to elimi-
nate errors through lab testing.

The cost of repairing a node that has been crippled due to a soft-
ware failure is especially high in WSN applications, due to the time,
money, and effort required to revisit a node deployed in such remote
rugged terrain. Solutions available in other domains to address soft-
ware failures do not easily apply to the case of WSNs, due to these
extreme conditions of deployment as well as the extreme resource
constraints characteristic of WSNs. For example, to achieve the vi-
sion of many low cost sensor nodes, today’s sensor motes typically
have extremely limited memory available, e.g. 4 KB of RAM and
128 KB of flash on MICA2 [5] class sensor motes. The embedded
controllers characteristic of these sensor nodes also typically lack
hardware memory protection and MMU units. Given these sub-
stantial hardware limitations, i.e. up to six orders of magnitude less
RAM for WSN systems than for PC systems, we expect desktop-
class solutions for detecting and repairing software faults to be too
expensive to directly apply to the resource-constrained domain of

WSNs. Embedded systems such as cell phones are closer in re-
sources to WSN systems, e.g. tens of MBs of RAM, but even here
their solutions do not necessarily apply. For example, when cell
phones/PDAs become unresponsive due to faulty embedded soft-
ware, their owners can often fix the problem by manually resetting
and/or power cycling the device. Manual reset is a prohibitively
expensive option in remote wireless sensor deployments, requiring
on-site visitation.

A system that could catch a software fault before it completely
disables a remote sensor node, and can provide diagnostic informa-
tion to remotely troubleshoot the root cause of the fault, would be
invaluable to in situ WSN deployments. The typical behavior after
encountering a run-time software fault is for a remote node to enter
a bad/unresponsive state that looks like a “black hole”. The fault is
detected retroactively by what information we don’t receive. The
node is completely disabled and needs to be redeployed. Even if
this situation occurs in the lab during testing, the ability to provide
more information than just a “black hole of silence” is clearly bene-
ficial. Such a diagnostic system would be useful not only for in situ
applications but also for troubleshooting errors during the testing
phase.

Our goal in this paper is to offer a diagnostic system, NodeMD,
capable of (1) catching run-time software faults as they occur and
before they completely disable a remote node, and (2) remotely di-
agnosing the root cause of the fault, thereby substantially reducing
the need for costly redeployment of nodes through on-site visits.
Our solution must be tailored for WSNs, i.e. it must be lightweight
and have a small footprint appropriate for the sensor network envi-
ronment.

A medical analogy can provide some insight into the state of the
art with respect to current methods of sensor node debugging. Vis-
iting a failed node in the field is similar to a country doctor that
needs to visit a remote area to treat a sick patient. For both a doc-
tor’s in-home visit and on-site repair of failed remote sensor nodes,
the cost of the visit is prohibitively expensive. The WSN commu-
nity has proposed a variety of approaches to mitigate these costs.
SOS [8] provides an ability to remotely patch a sensor OS, and
can be seen as analogous to a mail-order pharmacy that remotely
provides medicine to alleviate a sickness. Marionnete [14] and Nu-
cleus [13] provide the ability to remotely query a node for run-time
state information, and is analogous to a doctor using the telephone
to query a sick patient as to their health. t-kernel [23] provides a
general framework that seeks to prevent certain software faults like
livelock, but not others such as stack overflow, and can be seen as
vaccinating a patient against certain diseases but not others. Nu-
cleus also provides an event log in flash that can be recovered after
a node has died, and is analogous to providing post-mortem analy-
sis.

Given all these pieces of the puzzle, we are still missing effective
tools that are equivalent to a patient proactively reporting the rapid
onset and current symptoms of an illness, as well as their history
of behavior that led up to that illness, before that illness completely
incapacitates that patient. There is no equivalent ability, in the suite
of tools available to the WSN community, to a human patient that
picks up the phone and reports “Doctor, I am not feeling well, these
are the symptoms and this is what I did in the last few days”. Given
today’s WSN debugging tools, a node can still fail without report-
ing any information about the failure at the time of the failure. As
a result, today’s WSN community still cannot completely avoid a
need for the equivalent of in-home visits.

NodeMD is the last piece of the puzzle that is necessary to real-
ize the equivalent of a fully capable “remote doctor” in the world of
WSNs and thereby drastically reducing the need for on-site visits.

With NodeMD providing the missing link, we can envision a com-
plete system based on keeping the “human in the loop”, in which
problems with the software are brought immediately to the atten-
tion of the programmer before they disable a node, good diagnos-
tic tools are provided for timely diagnosis of the problem, and the
appropriate remedy can be applied by remotely updating a sensor
node with debugged code. Ultimately the goal of our system is to
bring node debugging in these challenging, resource-constrained,
remote wireless environments to a level that is as useful as what
exists in modern desktop computing systems.

The main contributions of this paper comprise the following:
building a fault management system for WSNs that is capable of
detecting a broad spectrum of software faults at run-time; intro-
ducing a recovery/debug mode that catches those faults so as not
to completely disable the afflicted node; timely notification of the
fault along with a brief diagnostic history of the events that led up
to the fault; continued interaction with the halted node to close the
loop on the debugging cycle by including a human programmer;
resource-constrained solutions to all of the above; and proof-of-
concept implementation on a real world sensor application. The
techniques proposed in this paper are designed to be generalizable
across many different systems, and we foresee future implementa-
tions of NodeMD being used in a wide context of embedded oper-
ating systems.

In Section 2, we discuss related work in fault management in
WSNs. Section 3 presents the unified system architecture of NodeMD.
Section 4 introduces our suite of algorithms for detecting faults at
run-time, including stack overflow, deadlock, livelock, and application-
specific faults. Section 5 discusses our solution for entering the
recovery/debug mode upon a detected fault and providing notifica-
tion via a compressed history of the events leading up to the fault.
Section 6 closes the loop on fault management by allowing interac-
tive debugging by a human of the remote node in the halted mode.
Finally, section 7 provides a detailed analysis of the current imple-
mentation in Mantis OS [7] for several real world sensor applica-
tions.

2. RELATED WORK
Sensor network debugging today usually begins with staring at

a set of blinking LEDs. JTAG interfaces on sensor boards pro-
vide increased visibility into faults, but only for nodes directly con-
nected to a wired network. For wireless sensor nodes in either an in
situ wireless deployment or testbed environment, some systems are
emerging that provide limited visibility into fault behavior. The
Sympathy system [12] focuses on debugging networking faults,
providing periodic reporting of various networking metrics to diag-
nose the reason behind reduced network throughput. The approach
is somewhat limited in its periodic reporting, though the period can
be adjusted, and does not focus on detecting application and OS
software failures on a node.

Nucleus [13], a deployment debugging system, was developed
to resolve a lack of information when live deployments fail. Its pri-
mary features are a robust logging system and on-demand requests
for information from nodes in the network. One essential theme
we share is that our debugging methods must persist even when
the application fails. Nucleus stores “printf” style messages in a
limited buffer within main memory, and also writes them to flash
memory to act as a sensor node “black box”. Such messages are in-
efficient to store in main memory because the information logged
vs. storage size is sparse. Also, the slow storage of messages in
flash may affect timing in the program if log operations are called
within timing sensitive code. Additionally, once a node has failed
such information is only available after the node has been retrieved.

Recent work done in t-kernel [23], a reliable OS kernel, takes
an approach that ensures the system is always able to retake control
from an application. At a low level, each branch instruction first
jumps to the system for verification before jumping back to the
target address. In fact, this preemption technique would be useful
to support some of the techniques proposed by NodeMD. t-kernel
provides a “safe execution environment” that allows the system to
recover from problems such as deadlock or livelock. However, t-
kernel is designed for reliability rather than debugging, and only
ensures that the system can always execute. It does not react to the
onset of such faults it may circumvent, i.e. deadlock and livelock.
Nor does it address how to detect other types of faults, such as stack
overflow, or how to efficiently provide useful information for fault
diagnosis.

Marionette [14] provides a mechanism to query the memory in
nodes for their state. It is specific to TinyOS, and does not focus on
detection, preemption, and notification of faults as they occur.

A variety of approaches for remote code updates in WSNs have
been proposed, and are summarized in [6]. These approaches can
be roughly divided into a networking component that achieves reli-
able code propagation, e.g. Deluge [9] and Aqueduct [10], and an
operating system component that enables efficient update of code
images on a sensor node, e.g. SOS [8] or the ELF loader [24]. Our
fault management system is agnostic to the particular combination
of mechanisms chosen for remote code updates. In theory any of
them could be reused in NodeMD’s architecture. For example, the
ELF dynamic modules loader [24] was recently implemented in-
side of MOS to enable efficient code updates, the same platform
upon which NodeMD is implemented. Our focus in this paper is
not on these mechanisms, but instead is on our innovation in auto-
mated fault detection, notification, and diagnosis, the missing links
in fault management for WSN systems.

3. SYSTEM ARCHITECTURE AND DESIGN
GOALS

NodeMD’s fault management system consists of three main sub-
systems that correspond to the system shown in Figure 1. These
subsystems are combined under a single unified architecture to pro-
vide an expansive solution to node-level fault diagnosis in deployed
WSNs.

• The fault detection subsystem is designed for monitoring the
health of the system and catching software faults such as
stack overflow, livelock, deadlock, and application-defined
faults as they occur, signified by the ’X’ of the failed node in
the figure.

• The fault notification or reporting subsystem is responsible
for constant system-oriented logging, in a space and time-
efficient manner, the sequence of events occurring in the sys-
tem. This compressed event trace in the form of a circular bit
vector is then conveyed in a notification message back to the
human user immediately after a fault.

• The fault diagnosis subsystem essentially closes the loop on
the “debugging” cycle, halting the node and dropping it into a
safe debug or error recovery mode wherein interactive queries
can be accepted from a remote human user for more detailed
diagnostic information, and remote code updates can also be
accepted.

NodeMD must accomplish the above diagnostic features while
achieving a variety of other design goals. First, it is essential that

Figure 1: System architecture of NodeMD.

fault detection and notification be extremely memory-efficient and
low overhead in terms of CPU and radio bandwidth, to fit within the
extreme resource constraints demanded by deployed sensor nodes.
This has strong implications, for example on streamlining the de-
sign of the event logging in main memory. Second, the design of
NodeMD should afford the human user flexibility to extend and
customize its diagnostic capabilities, i.e. in pursuit of a particular
bug or class of bugs. For example, NodeMD allows a user to define
their own application-specific conditions for triggering the detec-
tion of a “fault” and the subsequent halting of the node. Users can
further request more detailed diagnostic information when a node
is in the halted but stable/responsive debug mode. NodeMD also
allows programmers to customize event logging by adding custom
events to the history trace. Third, our goal is to introduce algo-
rithms and solutions that are generally applicable to a wide range
of embedded systems. For example, the stack overflow detection
algorithm is applicable not just on thread-based systems like MOS,
but also to event-driven single-stack systems like TinyOS.

4. FAULT DETECTION
Detecting faults that can potentially disable a node is not a fully

resolved problem in the context of WSNs. This section presents
work towards identifying fault-prone conditions and implementing
detection algorithms to prevent such conditions from paralyzing the
node.

Our system currently identifies three generic classes of high-risk
faults to applications that are of especial interest in concurrent sen-
sor operating systems: stack overflow, livelock and deadlock, and
application-specific faults. NodeMD is architected so that other
detectors can be added to our system, such as detection of out-
of-bounds memory writes, but at present we have focused first on
detecting these three general classes of faults.

While many WSN operating systems follow event-driven mod-
els, some fault classes between event-driven and concurrent sys-
tems are mutually exclusive. Typical problems in event-driven pro-
gramming concern the need for non-blocking concurrency and run-
to-completion code segments, which are implicitly addressed by
multithreaded scheduling. While our detection system is designed
for the prominent issues in multithreaded systems, detection of
some faults also applies to event-driven models, i.e. stack overflow.

4.1 Stack Overflow
Due to the extremely limited memory available, e.g. 4 KB of

RAM on MICA [5] class sensor motes, we have identified stack
overflow as a key suspect in software failure. Although stack usage
can be estimated by static analysis used in some approaches [21,
25], data dependencies common in WSNs make it difficult to choose
a stack size that is minimal yet guaranteed never to be exceeded.
In addition, errors in the code can make static analysis invalid. By
comparison, if static analysis is useful for finding a “ballpark” stack
size, stack overflow detection in NodeMD is a failsafe when the
analysis results needs to be fine tuned.

Our challenge has been to design and build a lightweight detec-
tor that can catch stack overflow before it causes further damage.
The detector needs to be lightweight as it may have to run often
in the really resource constrained environment of the sensor node.
As explained below, we employ an aspect-like [19] approach for
detection, which checks for stack overflow at each procedure call.
This approach makes detection of stack overflow and heap exhaus-
tion relatively inexpensive, so we can afford to call them frequently
without using an excessive number of cycles. We believe that this is
a lightweight practical approach that also makes few assumptions
about the code. For example, our stack overflow detector does not
assume any hardware-based memory protection, such as an MMU,
since such hardware support is frequently absent on the embedded
microcontrollers typical of sensor nodes. In addition, the software
running on typical sensor nodes today is usually available in the
source form. As a result, we opted to base our stack overflow de-
tection approach on a source code instrumentation approach.

NodeMD implements a compile time preprocessor to insert stack
checking code at the entry point of every procedure in the appli-
cation and supporting operating system (with a few exceptions,
namely the scheduler). Our approach is inspired by features of-
fered by the AspectC++ language [19] and AOP [20], although we
have used a custom implementation to avoid several limitations of
AspectC++, including unnecessary overhead and language depen-
dence. AspectC++ allows definition of the aspect that will execute
code on a procedure entry and/or exit. On the backend it translates
to standard C++ by nesting each called function within a wrapper
function that executes entry and exit code. Unfortunately, the As-
pectC++ implementation roughly doubles the stack overhead due to
additional variables that are put on the stack during the wrapper’s
call! We were unable to avoid this behavior without modifying the
AspectC++ compiler, so NodeMD implements a parser for C files
that inserts a procedure checking call within the target function it-
self.

The stack checking algorithm itself compares the current thread’s
stack top to the stack pointer (SP) just after a procedure is called. If
the SP exceeds the thread stack top, calling the current function will
result in a stack overflow. Interrupts are addressed in the same way;
at each interrupt handler entry, the stack requirements are checked
against the calling thread’s stack top. To address stack increases
due to parameter passing, we protect a small amount of “padding”
next to the top of the stack, and report a stack overflow if this mem-
ory is at risk. Insulating the overflow from other memory ensures
that the soon-to-be-executed recovery code has not been corrupted.

As a concrete example, consider how the AVR-GCC [26] com-
piler handles initial entry point to a scope, e.g. a procedure. This is
the compiler used for MICA class sensor motes that use the AVR
family of microcontrollers. In general, stack space is consumed by
three components to a procedure call: (1) the call overhead (return
address, old stack pointer), (2) the passed parameters to the call,
and (3) the local data defined in the new function. Given that the
call overhead is constant, this component of the problem is easily
solved by enforcing an extra 4 bytes of “red zone” to always be
available above the SP.

Designing the stack checking algorithm to exist within the called
function is actually the result of some initial analysis of how AVR-
GCC initializes local variables. When a procedure call is compiled
using AVR-GCC, the compiler calculates the stack requirements
for all local variables in a procedure in its first pass. During the
second compiler pass it uses this calculated value to increment the
stack pointer by the total stack usage due to local data - all before
the first line in the procedure is run. The conclusion this implies
is that the stack pointer is already pre-incremented when the pro-
cedure’s code begins to execute. Local variables are written to the
stack using STD (Store indirect with displacement) instructions off-
set from the new stack pointer rather than with PUSH instructions.
The advantageous result is any stack space reserved for local data
will not be overwritten until those local variables are defined. In-
serting a stack checking algorithm in the procedure’s first line of
C code, before any local definitions, ensures that we can read the
pre-incremented SP and identify a future stack overflow before any
memory has been corrupted. However, this behavior only holds
true for stack overflows due to locally defined data.

Parameter pushing poses the most difficult challenge to our stack
overflow detection method. Writing a parameter onto the stack uses
the PUSH instruction, leading to much more unpredictable fluctu-
ations in the stack pointer at run time. The stack consumed by
parameters cannot be determined inside the function call, as we
do with local data, without some stack space having already been
corrupted before our detection algorithm is able to run. To coun-
teract potential memory corruption, the most viable option is to
preemptively assess how much stack could possibly be used by pa-
rameters of future procedure calls, and calculate how much addi-
tional “red zone” will ensure those parameters will not overflow
the stack. To reiterate, a red zone is a buffer of stack space above
the stack pointer that must be available to safely call procedures.
For example, lets say a procedure A will call procedure B (int a, int
b, int c) and procedure C (long a, long b, long c). Using a value of
2 bytes per int and 4 bytes per long, procedure B requires 6 bytes
of stack for parameters, and procedure C requires 12 bytes. Pro-
cedure A’s red zone must cover the largest quantity of parameters
defined by either procedure B or procedure C, in this case 12 bytes
for procedure C.

However, most of the expected red zone costs are mitigated within
AVR-GCC. AVR-GCC uses volatile 8-bit registers 18-25 to pass
parameters without pushing them on the stack. Through testing we
were consistently able to pass 4 or fewer parameters totaling to 8 or
fewer bytes without additional stack usage. Only excess parame-
ters that are not able to be passed through these registers need to be
covered by a red zone buffer. We anticipate that calculating the red
zone required for excess parameters is most effectively achieved
through static analysis and is ongoing research in this project.

Figure 2 shows a snapshot of the stack contents at the entry
point for a given function ’a procedure’. a procedure has a total
of 6 parameters and defines 4 local variables, all using 2 byte data
structures for simplicity. At the call of a procedure the first 4 pa-
rameters fill the available volatile registers. The extra parameters
are pushed onto the stack, followed by the calling procedure’s stack
pointer and the return address. The predetermined size of local data
(8 bytes) is then added to the stack pointer before the first lines of
procedure code begin to execute.

In the current procedure context (between the old and new stack
pointers), the stack can be divided into memory that has already
been written, and memory that is still uninitialized and intact. Al-
though stack space for the local data has been preallocated, no lo-
cal definitions have yet been reached and no data has been written
to those stack locations. The significant risk for stack overflow

Figure 2: Stack snapshot at the point of entry to a procedure,
AVR-GCC assembly.

concerns the space used for parameters not passed through reg-
isters and the function call overhead. This chunk of memory is
our red zone, the stack space we have to assume will be overwrit-
ten before our detection algorithm is able to run. Validation of the
red zone defined in Figure 2 was done at the original stack over-
flow check in the caller. If the chunk of memory defined by the
red zone was not available when the caller’s procedure began, a
stack overflow would have been detected. Consequently, since no
stack overflow was detected in the caller, the red zone buffer at the
call to a procedure can be overwritten without risking a stack over-
flow. In effect, the historical sequence up to the snapshot is such:
(1) the caller ensures the red zone is available, (2) the caller calls
a procedure, (3) a procedure checks for stack overflow due to local
data, (4) a procedure ensures the new red zone is available (stack
not shown).

On the AVR (Mica2/Z) platform the AVR-GCC compiler uses
several tweaks and optimizations for parameter passing, but for all
intents and purposes the visible behavior is the same. It is important
to note that this design does utilize several features specific to the
platform and compiler. Future adaptations will require compiler-
specific algorithms, but an open research issue is whether an effi-
cient generic approach can be found.

Finally, when this case is detected, we wish to avoid any fur-
ther corruption of another thread’s stack. Any continued execution
risks further memory corruption. Thus, it’s critical after detection
to immediately jump to error recovery code, i.e. a debug mode, and
freeze the running state of the system. This is discussed further in
section 5.

4.2 Deadlock and Livelock
Deadlock and livelock are cases where a node is still “alive” but

is no longer responsive. Although the node hasn’t experienced a
fatal error and rebooted (as would be the case in a stack overflow)
one or more application threads has entered a bad state. In a mul-
tithreaded application, it’s assumed that the loss of even a single
application thread will likely result in a useless node.

4.2.1 Deadlock
Classical problems in concurrent programming arise from inter-

dependency. Deadlock occurs for example when two threads are
blocked in a way that each one is waiting on some work of the
other to complete, and thus neither proceeds.

Common cases of deadlock arise from a collective circular de-
pendence on semaphores, mutexes, timer interrupts, and data con-
ditions (the thread will unblock when the temperature has exceeded
X degrees). Classic solutions to deadlock such as constructing
resource allocation graphs and analyzing for circular dependen-
cies appear to be quite heavyweight and complex for sensor nodes.
Our detector implements a simpler solution suitable for resource-
constrained WSNs.

4.2.2 Livelock
Livelocked code, a situation similar to deadlock, differs because

the code is not specifically blocked but is unable to make forward
progress. For example, a running thread could loop continuously in
a section of its code, unable to ever meet the condition for exiting
that section of the code, either because of programmer error or un-
expected factors. The result would be that desired forward progress
is stopped in the rest of the thread.

Many of the conditions that cause deadlock can also result in a
livelock by polling on a condition rather than blocking. In addition
to the dependency issues noted for deadlocks, detecting livelock be-
comes significantly more complex when livelocked code is within
an interrupt-disabled context. When an application livelocks within
an interrupt handler or atomic section, the scheduler is no longer
able to context switch, process timers, or have any control over sys-
tem execution. In this case, the software detector would be unable
to run and catch the livelock. Consequently, a hardware watch-
dog timer would be needed to reset the system. In the following,
we propose a hybrid approach that combines software detection of
livelock and deadlock with a hardware watchdog timer to handle
the severest cases of interrupt-disabled livelock/deadlock.

4.2.3 General Solution: Thread Checkpoints
Our key observation of deadlock and livelock is that they are

two conditions with a common symptom: parts of the system are
not running. Rather than addressing the causes of these conditions,
i.e. rather than maintaining complex state in resource allocation
graphs to analyze for circular dependencies, our approach is instead
to identify their symptoms and draw a diagnostic conclusion based
on those symptoms. A variety of cases arise:

• Some threads deadlocked (partial deadlock)

• All threads deadlocked

• At least one thread livelocked

• One thread livelocked in an interrupt-disabled context

In a multithreaded OS, the symptoms of all but the last condition
can be identified when a persistent thread fails to repeat a sequence
of code. In WSNs, applications are often duty-cycle driven due to

sensing and/or power requirements, which leads to periodically re-
peated segments of code, within a while() block for example. When
either a deadlock or livelock occurs in that thread, certain state-
ments within that loop will fail to recur. Therefore the case we aim
to detect is when a thread has noticeably stopped repeating.

Use of a hardware watchdog timer is the simplest way to detect a
failure to recur. If the watchdog is reset at every iteration of a while
statement, the system recovers itself when that reset does not occur.
However, applying a watchdog to a multithreaded system presents
a challenge: how can a single timer ensure that several threads are
all executing properly? Yet another extensibility issue exists due to
the logistics of watchdogs. On our target AVR (Mica2/Z) platform,
the 8-bit hardware timers restrict the maximum watchdog length to
2 seconds.

Instead, the solution proposed by NodeMD takes a primarily
software-based approach. We begin with an assumption that in a
multithreaded sensor OS, each application thread can provide an
estimate of its “period” of execution, i.e. the time it takes for its
while() loop to iterate. We believe that this is quite reasonable for
a wide cross section of today’s WSN applications, e.g. sensing and
networking applications, which are often driven by specific duty
cycles with well known wake/sleep periods. Combining the repet-
itive nature of these threaded applications, and the time constraints
needed for a correct duty cycle, our assumption is that we can base
a thread “timeout” value on the approximate thread period, e.g. a
timeout may be twice the thread’s period. The application program-
mer effectively states some constraints about the program, i.e. that
a thread ought to execute every Y seconds, and NodeMD’s detec-
tion schemes determine if those application constraints have been
violated, namely the thread has not executed for 2 ∗ Y seconds so
there must be a problem. While this simple approach requires es-
timation and some manual indication to the system by the applica-
tion, e.g. by insertion of a small amount of code, it is a best-effort
compromise. Our approach takes advantage of typical WSN ap-
plication behavior while avoiding the system making assumptions
about each application’s timing.

Our implementation introduces the notion of a thread checkpoint
to emulate the behavior of a hardware watchdog. As shown in Fig-
ure 3, each thread declares a checkpoint (1), and then registers that
checkpoint, specifying the expected period of this checkpoint (2).
Next, a checkpoint reached(&mycheckpoint) call is added to a crit-
ical point in the thread that ought to be repeated during correct peri-
odic execution of the thread (3). Whenever a checkpoint is reached
during execution, a parameter in the checkpoint is reset to the cur-
rent system real time, effectively time stamping the most recent
iteration by the thread through this critical point in the code. At a
periodic interval, the kernel inspects all registered checkpoints and
compares them to the current real time (CRT). If the difference be-
tween the CRT and the thread’s last time stamp exceeds the thread’s
timeout value, our algorithm assumes the thread has livelocked or
deadlocked and enters error recovery code. As seen by the (#) in-
dicators in Figure 3, this approach requires only 3 additional lines
per checkpoint.

The thread’s period should be carefully estimated. As long as
the thread period is not underestimated, the detection algorithm
will correctly detect a failure due to livelock or deadlock, albeit
with a greater delay. For example, suppose the true thread period
is Y seconds per loop iteration, the estimated period Z is greater
than or equal to Y , the timeout is twice the estimate, i.e. 2 ∗ Z,
and NodeMD’s detector is invoked with a delay D after the time-
out. If a livelock/deadlock occurs for this thread immediately after
the checkpoint has been reached, then the worst-case delay in de-
tecting the failure is 2 ∗ Z + D. In the case that Z = Y , i.e. the

#define sleep_time_a 1000
#define C <approximate cost of ...>
checkpoint_t mycheckpoint; (1)
void thread_a()
{

register_checkpoint(&mycheckpoint,
sleep_time_a + C); (2)

while(1)
{

checkpoint_reached(&mycheckpoint); (3)
...
thread_sleep(sleep_time_a);

}
}

Figure 3: Example checkpoint code.

thread period is accurately estimated, then the worst-case delay is
2∗Y +D. If in addition the timeout is set at the period, then the de-
lay is Y + D. In all these cases, the algorithm will correctly detect
the failure, albeit with some lag. This delay should not be a big
limitation in typical deployments, as we believe the nature of dead-
lock/livelock does not typically require immediate detection. For
example, if the detector is invoked every D = 2 seconds, sensor
data is reported by this sensing thread every Z = Y = 5 seconds,
and the timeout is set at 2 ∗Z = 10 seconds, then NodeMD should
catch the livelock at worst about 12 seconds after it occurs, which
we believe to be acceptable for most deployments. However, if
the thread period is significantly underestimated, e.g. Z = Y/4,
then triggering of the detector can result in a false positive. In such
a case, the timeout expires too soon, and the detector checks for
expiration so quickly thereafter (D is small) that it finds the check-
point to have expired and falsely identifies lack of progress, even
though the thread is still legitimately making progress. As a result,
it is important to err on the side of overestimating the period for
this technique to be effective.

Placement of the checkpoint in a loop is critical for correct detec-
tion of livelock/deadlock, i.e. lack of thread progress. For example,
consider the thread in Figure 4 that has both an outer loop OL and
multiple inner loops I1 and I2. If the checkpoint is placed in the
inner loop I1 at (1), then a livelock may occur within the inner loop
I1, causing the checkpoint to be continuously updated even though
the thread is not making progress through the outer loop. In this
case, incorrect placement of the checkpoint fails to detect the live-
lock. However, if the checkpoint is placed in the outer loop OL at
(2), then a livelock within any of the inner loops will be detected on
the next invocation of the livelock detector, as the checkpoint will
not be reached on the outer loop.

Verifying the timeout of each checkpoint is done at the kernel
level. In a multi-threaded system, control is typically returned to
the kernel’s scheduler via the hardware time slice timer, so that
threads can be periodically context switched. Even if multiple ap-
plication threads deadlock and/or livelock in a “normal” manner,
i.e. contending for shared system resources in a non-interrupt-
disabled context, then control still returns to the scheduler, and ap-
plication deadlock/livelock do not paralyze such a system. In this
way, the OS can periodically invoke NodeMD’s deadlock/livelock
detector to check to see whether any checkpoints have expired.
Also, this approach enables NodeMD, immediately after detect-
ing a livelock/deadlock, to gracefully drop the system into a stable
debug mode that is still responsive to interaction from the remote
human debugger. If additional hardware timers are available, then
this approach can be augmented with a dedicated hardware timer
devoted just to deadlock/livelock detection.

void thread_a()
{

/* Outer Loop OL */
while(1)
{

/* Inner Loop I1 */
while(...)
{

/* put checkpoint_reached() here? (1) */
...
}

...

/* Inner Loop I2 */
while(...)
{

...
}

/* put checkpoint_reached() here? (2) */
...
thread_sleep(sleep_time_a);

}
}

Figure 4: Checkpoint placement is critical to correctly captur-
ing lack of progress in a thread due to deadlock/livelock.

Another interesting parameter in the checkpointing scheme is
the choice of timeout value. Currently NodeMD enforces a de-
fault timeout equal to twice the period, but the multiplier can be set
differently at compile time. Our reasoning was that doubling the
estimated period would err on the side of overestimation, and thus
reduce the occurrence of false positives. We leave this as an open
issue for further research.

A thread may also declare more than one checkpoint to track
different periods of recurrence in different regions of its code. This
would be useful in cases where an application thread may have mul-
tiple legitimate duty cycles whose progress needs to be checked.
For example, a sensing thread may have a 10% energy-based duty
cycle that wakes/sleeps every 100 seconds, i.e. 90 seconds asleep
and 10 seconds awake, and may also have a second data require-
ment that samples be collected every second during the wake time.
In this case, the thread is making progress only if it is awake every
100 seconds and collecting data every second while awake. In this
case, separate checkpoints would be needed, one for the outer loop
of energy-based duty cycling, and a second for the inner loop of
data sampling.

The above checkpointing solution does not account for the fi-
nal detection case, in which a thread is livelocked with interrupts
disabled. In this situation control flow is never released from the
running thread. Our hardware timers are crippled, and the sched-
uler cannot initiate a context switch or process any software timers,
both of which prohibit the detection algorithm from running.

To solve this problem, NodeMD incorporates a hardware watch-
dog as a second tier in a hierarchical protection scheme. While
checkpoints in software ensure the correctness of each thread, the
watchdog is enabled and then reset each time the kernel detection
algorithm executes. If the detection algorithm is ever unable to run,
such as when an interrupt disabled livelock occurs, the watchdog
acts as a safety mechanism and enters recovery code once the node

has reset. One of the limiting factors of the AVR watchdog is its 2
second maximum timeout, so the detection algorithm needs to have
a more frequent period than the watchdog limit.

Unfortunately, part of our diagnosis is based on the preservation
of main memory, which is lost when the hardware is reset by the
watchdog. An area we’re still exploring is whether references to
main memory can be saved to non-volatile storage and used to ac-
cess the old data. If the memory on a platform is not zeroed after
a watchdog reset, and we provide static heap memory for sepa-
rate recovery components in the system, it may be possible to save
the volatile areas we’re interested in (as that static memory would
always be at the same place and would not overwrite volatile mem-
ory). Implementation success will likely vary on a platform-by-
platform basis, so this is proposed as a best effort solution.

4.3 Application-specific faults
Many data integrity rules for WSN applications are domain spe-

cific. An example is temperature in a weather observation system,
which should not report values outside of a logical range, or report
rates of change that are too rapid. Incorrect data typically indicates
a sensor hardware fault.

NodeMD supports an API that the application programmer can
call when custom code detects that domain-specific constraints are
violated. Our system introduces the ASSERT(condition) macro to
allow the system to validate that certain application constraints are
not untrue. This is similar to the approach introduced by Design by
Contract [11], but would not kill a program. Instead, if an assertion
fails, then NodeMD directly drops the system into a stable debug
mode, suspending all application threads.

Although on the surface this looks like “just plain asserts”, there
are proposed methods for designing software in a way that uses
assertions to the maximum effect. One example of such work is
Design by Contract, which uses assertions to verify preconditions,
postconditions and/or invariants.

As an example of assertions in the application specific domain,
a weather observation system could check that gradients in temper-
ature change are within expected limits, and that the behavior of a
particular node is consistent with the network (e.g. if a single node
among 10 nodes in the space of 1 square mile is detecting a tem-
perature that is 30 degrees centigrade lower than other sensors, the
sensor is probably broken).

This approach gives the application programmer considerable
flexibility to invoke the debug mode and suspend a node through
any number of (failed) assertion conditions. We believe that this
capability to perform custom detection and its interaction with the
system is one of the areas where significant additional research can
be done.

5. FAULT NOTIFICATION
For many complex problems that arise in debugging, human in-

teraction is often the only reliable way to address many software
issues. Therefore, when a fault is detected we desire to relay a di-
agnostic profile of the faulty node to the application programmer in
order to help diagnose the cause of the fault.

Retrieving fault information poses a difficult challenge to any
WSN debugging system. With a wired interface, JTAG debugger
units provide a multitude of information to any connected node, but
would triple the cost of each node [22], and don’t apply to remote
wireless deployments. Conventional string logging [16] of events
is an approach more commonly used for wired devices. Storing
events via strings is a fairly inefficient approach in WSNs, and also
incurs a higher energy cost in transmitting more data. Logging via
’printf’ statements is also a heavyweight operation on embedded

devices like WSNs, often interfering with the timing of lightweight
programs.

We instead present a streamlined solution that is minimally in-
trusive to the running application yet offers a rich set of diagnostic
information designed to identify how and why an application failed.

5.1 Maintaining a streamlined diagnostic pro-
file

Once a fault is detected, a key design issue is what information to
send in the error report. Should only a summary of the information
be presented to the human? If so, which information should be
included in the summary? Another observation is that a snapshot of
the current state of memory may be insufficient to diagnose certain
software faults. The history or profile of behavior leading up to the
fault may also need to be preserved, e.g. the sequence of function
calls that resulted in the software fault, not just the current call
stack. This opens up a variety of issues, such as how much recorded
history to store and where (in RAM, in-chip flash, external flash),
how to compress that history in memory-limited systems, and what
historical information and events will be most useful to which types
of faults.

The solution NodeMD implements is to keep an execution trace
of recent system events within a circular bitmap, similar to work
found in ARTS [17] and the Wind River System Viewer [18]. Each
defined event can be described as a unique order of bits, and is
compressed to a length dependent on the number of combinations
needed to express all recorded events. Events are encoded as bit
patterns, and multiple events could even be stored in a single byte,
depending on the need for compression. Events are then entered
into a circular buffer in main memory (RAM). When memory al-
located to the buffer is exhausted we begin overwriting the oldest
events first. NodeMD avoids using flash memory because the ex-
pensive write instructions do not facilitate frequent log messages.

Which events in the system are recorded depends to some ex-
tent on the application domain. We have identified a set of 15 ma-
jor system events that we have found to paint a fairly extensive
picture of execution history. These include procedure entry/exit,
thread behavior (context switches, blocking, sleeping), timer be-
havior, and interrupts. In particular, NodeMD tracks the following
system events:

• Context switches

• Procedure calls/returns

• Hardware interrupts

• Thread blocks/unblocks, both explicit and OS directed, i.e.
interrupt driven devices

• Software timer sets/fires

• Thread sleep/wakeup behavior

• Creating and exiting threads

Most system events are logged at various levels in the operating
system. However, our parser discussed in Section 4.1 also adds
debugging code to the application when necessary.

In addition to the system defined events, NodeMD gives the ap-
plication programmer the flexibility to specify custom application
events that should be logged to aid in the diagnosis. While in the
system domain it makes sense to log a semaphore operation, in the
application domain it may make sense to log particular events re-
lated to application behavior, e.g. “I think the fire is starting!” in
the case of a fire control system.

Figure 5: Example application and corresponding trace data.

An example of how NodeMD generates an event trace for an ap-
plication is shown in Figure 5. First, we see the C code for two
simple MOS applications, start and blink a, which are shaded blue
(medium gray on black-and-white printers) and green (light gray
on b&w) respectively. These applications are each executed in a
separate thread. The trace at the bottom of the figure has also been
coded with the same colors/shades to correlate system event behav-
ior with the corresponding code, and line numbers have been added
to traces to help identify the correlation. We can clearly identify
different running thread contexts, context switches, and kernel rou-
tines for thread scheduling and power management. For example,
the breakpoint code 1111 followed by the thread new event 1101
clearly identifies that the initial context belongs to the start thread.
A context switch then creates a pattern of events that corresponds
with blink a’s code. The second context switch returns to the start
thread, which quickly completes. The third context switch ush-
ers in a sequence of events that correspond to energy-based system

management. The final context switch returns control to blink a,
which then calls the ASSERT(0) statement. This statement will
fail, resulting in controlled detection of an application-specific soft-
ware fault that causes the system to halt, i.e. NodeMD will detect
the application-specific fault and gracefully drop the system into a
stable debug mode. Note that in this example that we have taken
advantage of NodeMD’s ability to insert custom application fault
detectors via the ASSERT() statement to aid in debugging, i.e. in-
jecting an artificial fault.

Note that this example also leverages NodeMD’s ability to create
custom application events to be logged. At line 8 the application
code sets a custom application BREAKPOINT trace code 1111 in
order to help identify key locations in the application code. “Break-
points” can be inserted anywhere in code as a “find me” for the
programmer, which helps to provide correspondence between code
and event traces. In Figure 5 we see this breakpoint appear as the
last trace before the error, so since we know where the breakpoint
was inserted (which in other cases will likely be surrounded with
a different sequence of events) we can conclude where the error
occurred. Note that in our terminology a “breakpoint” is merely
a special application-defined identifier in the event trace, and does
not actually halt execution as in a debugger’s breakpoint.

This example illustrates the memory trade off that NodeMD makes
between the detail of events logged and the length of logging that
is possible. Long event traces (e.g. last 5 minutes of running) are
useful when trying to determine at what time a fault occurred, but
if there are not enough details in them to know exactly what hap-
pened, they are not useful enough to resolve the fault. NodeMD’s
current implementation pushes the envelope towards one extreme,
namely very spare event detail, while favoring longer traces. Given
the 15 system events, we chose to initially devote only 4 bits to each
event, thus admitting only one extra application-specific breakpoint
event. Such a compact event code also removes the ability to pro-
vide any qualifying information to a given event, i.e. to what thread
is the context switched, what procedure is being called, etc.

Our reasoning was that sensor systems are relatively simple, with
typically only a handful of threads, so qualifying information such
as which thread context was under execution at a given time could
be inferred by careful analysis of the event trace, and need not be
included in event detail. Sensor systems don’t have the luxury of
including extraneous information in such extremely limited RAM,
so our philosophy was to see how how far we could go in stream-
lining events and still provide useful debugging information. As
illustrated by this example, each application exhibits a largely iden-
tifiable behavior or signature, as revealed by the sequence of logged
events, that helps to uniquely identify which thread is currently ex-
ecuting and where in that thread’s code that execution is taking
place. In addition, the ability to inject application-specific break-
points/events at strategic locations in the code further distinguishes
application behavior and helps to triangulate to the execution point
in the code. In this example, we were able to infer substantial con-
textual information about execution behavior even with extremely
spare event detail. Though this is admittedly a simple example, we
have also tested this approach on other applications and found the
event trace to be useful. In fact, we describe in the evaluation sec-
tion how this sparse approach towards event tracing was nonethe-
less quite helpful in pinpointing a bug in MOS despite having only
4 bits/event for debugging.

While our current implementation explores an important test case,
NodeMD is not restricted to any specific number of bits/event. A
developer that wishes to log more system and/or application-specific
events can increase the number of bits/event, though the system
code will have to be instrumented at the appropriate locations to

log each additional event, and new codes will have to be defined.
Similarly, a developer that wishes to include more detail for each
event will need to devote more bits to provide qualifying informa-
tion for each such event.

5.2 Entering a debug mode
Our system is designed to enter a “debug mode” that will take

effect when a fault is detected. Before a node enters a faulty state,
it jumps to a sequence of methods responsible for stabilizing and
preserving the state of the system. This mode could alternatively
be initiated at any other time with a specific network command.
For the system faults addressed in this paper, we believe we have
solutions to the previously identified faults that ensure that the no-
tification is properly sent.

At the time of the fault, a set of initial error recovery code freezes
critical parts of the system to avoid issues that might arise from the
fault, such as a context switch after a stack overflow. Certain appli-
cation modules are then reinitialized in software to ensure critical
operations such as networking needed for notification will be pos-
sible even if an error occurred in that module. For example if the
application failed inside a call to the radio driver, it’s likely that the
mutex held by that call would not be released until the driver was
essentially “reset”. NodeMD takes a software solution to resetting
OS components in order to preserve the main memory as much as
possible.

After the initial code, NodeMD enters a debugging state with bi-
directional communication. A faulty node uses the wireless mesh
network to inform the remote administrator that the system is in a
faulty state and uploads the available crash information. Given that
the event trace is large enough to span several packets, the initial
content of this information is limited to the direct cause of error
and the event trace itself. Following the first upload, the node will
remain in a duty-cycled standby state waiting for instructions. At
this point, any memory location (including complete memory dump
useful for debugging on simulators) could be sent on user request.
As the complete memory picture is expensive to transmit over a
wireless network, this information will be sent only at the request
of the human operator.

While NodeMD has a limited implementation of this debugging
mode, a variety of open research issues remain. How can we ensure
that the debug mode itself is not buggy? While it can’t be guaran-
teed that there are no bugs in debug mode, the error recovery code
used in debug mode is only a small portion of the rest of the system
and so can be scrutinized more carefully to remove bugs. More-
over, this code will be reused over multiple deployments, with the
likelihood that in the long run that bugs in the debug mode will be
more readily discovered and ironed out, thus appearing more rarely
than in the rest of the system. Other open issues include whether
jumping to this mode could cause parts of the system at the time
of the fault to be lost, and whether certain faulty states could inter-
fere with the correct operation of the debugging code. Additionally,
there is a great deal of post-analysis research that still needs to be
done regarding reliable network communication between the pro-
grammer and the debugging mode.

6. FAULT DIAGNOSIS - CLOSING THE LOOP
The final piece of NodeMD’s architecture is closing the loop to

enable interaction between the human user and faulty nodes in the
system. Following delivery of an initial error report that includes
the event trace, our system drops into an interactive debug mode
that leaves many decisions to the user about how best to proceed
with further debugging. The philosophy is that the human has the
expertise and domain knowledge to determine how best to debug

the problem, so it is incumbent on our system to support the user in
this endeavor to the extent practicable for WSNs. This means that
NodeMD supports two key capabilities in this mode: the ability for
the human to interrogate the node by sending on-demand requests
querying for more detailed information; and the ability to upload a
remedy to the node in the form of new code updates.

6.1 Remote Debugging
Our controls allow the human to obtain all available fault infor-

mation on a node. This can range from obtaining system parame-
ters that were not included in the initial brief error report, to a full
dump of memory. By tweaking the monitoring parameters more in-
formation about the fault can be collected (e.g. increasing the size
of the event bitmap, and amount of info collected). The node can
be restarted to replicate the error and take the new parameters into
effect.

Queries are sent on-demand, and it is incumbent on the human
user to balance how much usable information should be retrieved
versus the energy costs of retrieval, i.e. how much strain on system
resources would be incurred by transferring a full memory dump.
For example, transferring a full 4 KB of RAM using packet sizes
of 50 bytes over a lossy multi-hop wireless network can necessitate
many transmissions and retransmissions, not to mention the con-
siderable inefficiency of header overhead in such small packets.

Although we do not write in flash memory due to the perfor-
mance impact during deployment, NodeMD could be modified to
allow for writing the event queue in flash memory for nodes that
have been deployed specifically for debugging, such as in a testbed.
This would allow for much larger buffer sizes at the expense of ex-
ecution times, which may be appropriate for debug-only testing. In
this case, the larger event trace could be retrieved from flash when
the node drops into this interactive debug mode.

6.2 Code Updates
In terms of remote code updates, our intent is to choose a reason-

able combination of reliable code propagation and degrees of op-
erating system modularity to enable dynamic reprogramming. The
prior work in this area [8, 9, 10] offers many options for closing the
loop in fault management systems for WSNs.

The Mantis research group is currently working on an imple-
mentation that modifies Mantis OS, our target platform, to support
dynamic loading of modules as a means of efficient code updates.
The MOS system has been supplemented with a thread whose task
is to act as an ELF loader [24]. This work is an ongoing collabora-
tion with the Swedish Institute of Computer Science (SICS). Once
this is completed, our implementation of NodeMD in MOS will be
able to leverage this mechanism for integrating a method for remote
code updates.

7. IMPLEMENTATION AND EXPERIMEN-
TAL ANALYSIS

To evaluate the effectiveness of NodeMD, we present our im-
plementation results from the use of NodeMD in the Mantis OS
(MOS). All of our experimental results are based on this MOS im-
plementation; however the system is not inherently tied to any OS.
Notification and diagnostic schemes proposed in this paper could
be implemented in any operating system, and although fault de-
tection schemes proposed are tailored towards multithreaded OS’s,
some of the general techniques are applicable to event driven mod-
els as well.

7.1 Effectiveness of Fault Detection
We begin by evaluating how effectively NodeMD detects stack

overflow. We constructed numerous experiments that forced stack
overflow, including recursive functions, highly nested function calls,
and calls to functions with large local memory allocations, e.g.
many local variables. For all of these cases of stack overflow, our
experiments indicated that NodeMD was able to immediately de-
tect the stack overflow using the function-based stack checking ap-
proach described previously. In addition, NodeMD provided an ac-
curate event history leading up to the stack overflow event. Based
on how it was designed, we expected that our stack overflow detec-
tor would not have any false positives with these cases. However,
in our most recent testing we found a fourth case that exposed a
weakness in our original algorithm. Passing enough parameters to
a procedure, such that the compiler can no longer use only volatile
registers to pass them, resulted in unexpected stack growth. As a
result, we have incorporated a “red zone” to buffer the top of the
stack from other areas of memory. However, determining the ap-
propriate size of this red zone is difficult. If the red zone is too
small, we risk a stack overflow due to parameter pushing. If the red
zone is too large, false positive detections become a possibility. A
goal of our ongoing research is to incorporate static analysis tools
to determine the exact red zone value needed for the stack overflow
check in each procedure. An exact value will ideally prevent any
cases of stack overflow due to parameter pushing, and at the same
time prevent most plausible false positives.

The stack overflow detector demonstrated its practical utility in
helping to debug the implementation of NodeMD itself. In an
ironic twist, while testing the system for deadlock recovery, a bug
in the recovery code caused a stack overflow. Although the re-
covery code was not expected to analyze itself and this scenario
was unintentionally encountered, NodeMD’s stack overflow detec-
tor correctly identified the problem.

We evaluated how effectively NodeMD detected deadlock and
livelock. Section 4.2.3 identifies four specific cases all classified
under the general terms deadlock and livelock: complete deadlock,
partial deadlock, livelock, and interrupt-disabled livelock. For each
of these conditions we evaluated the checkpoint-based algorithm of
NodeMD on a binary scale: either the deadlock/livelock occurrence
was caught, or it was not.

The testing regime started a set of threads programmed to ei-
ther run correctly, or encounter one of the problems above. Up
to four threads would run simultaneously, and different combina-
tions of livelock, total deadlock, partial deadlock, and interrupt-
disabled livelock were induced in the threads. To emulate live-
lock, we inserted a while(1) loop in a thread. To emulate total
deadlock, threads would develop circular dependencies on sets of
semaphores. For partial deadlock, at least one thread was allowed
to execute in a normal fashion, while others deadlocked.

The applications that we used to test the checkpoint approach
were typical WSN applications that exhibited periodic behavior,
e.g. sense-and-forward and a WSN base station. The sense-and-
forward application typically loops through code that periodically
gets sensor data, sends that data over the radio, and then sleeps.
The base station application typically will make periodic calls to
receive data from the radio. Similar to a select() call in UNIX, the
receive call in MOS has a timeout parameter associated with it that
permits the call to return after a maximum wait time if no data was
received.

For all of these applications, the checkpoint technique required
the application developer to estimate a thread period. We sought
to emulate how a high-level WSN developer might estimate this
period. Our approach was to inspect the code from a high level and

determine an approximate upper bound on delay on each section
of the code, sum the delays, and add some extra margin to arrive
at a ballpark estimate of the thread period. We did not go in-depth
to measure the exact execution time of each individual instruction
in the loop, as we would not expect a typical WSN developer to
know instruction-level timing details. For example, for sense-and-
forward, the application code tells us that its timers are set up so
that data must be sampled every Tsample seconds while awake for
a total of N samples, that the send command takes relatively little
time Tsend, and that we sleep for Tsleep seconds per loop iteration.
Thus, we set the thread period equal to N ∗ (Tsample + Tsend) +
Tsleep + δ, where δ is a rough estimate of all other instructions
in the period. The timeout is then set to be twice the estimated
thread period. Similarly, for the base station application, we know
that in each loop iteration the thread waits a maximum of Ttimeout

seconds to receive a packet before timing out, and sleeps Tsleep, so
we set the thread period equal to Ttimeout + Tsleep + ε.

Given the experimental setup and estimation approach above,
our checkpoint-based detector was able to accurately detect the
presence of all combinations of complete deadlock, partial dead-
lock, livelock, and interrupt-disabled livelock. In all cases, the
NodeMD detector was able to execute despite application threads
being paralyzed, and correctly dropped into debug mode while pro-
viding its event trace in RAM. No false negatives were encountered
in testing, although plausible scenarios have been suggested. How-
ever, we are confident that circumstances that lead to false negatives
can likely be solved using a combination of deadlock/livelock de-
tection, application-specific fault detection and Design by Contract
practices. False positives were not encountered either, as our ap-
proach for selecting the thread period correctly overestimated the
actual thread period.

In cases where more than one thread was livelocked and/or dead-
locked, NodeMD only detected that one of the threads had violated
their checkpoint timer, not each such thread. This was due to the
nature of NodeMD, which halts the system on the first fault viola-
tion that it detects. Detecting concurrent faults is beyond the ca-
pacity of NodeMD, and is probably not needed, as NodeMD could,
for example, detect and remove individual livelocks one by one.

Our current implementation was able to detect when an interrupt-
disabled livelock case occurred only through the hardware watch-
dog reset. This is probably the least common deadlock state, as
systems are spending the majority of their time with interrupts en-
abled. At the moment, our implementation is limited to entering
the debug mode for this case so notification that something went
wrong would be received, but the state of the memory would be
lost.

Correctly diagnosing when an individual case of deadlock/livelock
has actually occurred has also proven to be dependent on the event
trace. Since NodeMD’s checkpoint-based detection algorithm is a
solution based on providing information to the human, it expects
a programmer to correctly interpret the data in order to diagnose
the problem. Experience from the hard-real time community us-
ing similar tools [18], [27] indicates that similar systems provide
significant help in understanding system behavior, and determining
what additional event categories would be useful.

It is very difficult to design an experiment that measures effec-
tiveness in a general case, but the fact that the combination of hard-
ware watchdogs and event traces have been used for a long time
in the hard real time community [18] attests to their usefulness in
practice. In addition, NodeMD provides more information than the
programmer previously had available.

The effectiveness of application-defined ASSERT()’s was vali-
dated first by inspecting the code that checks the ASSERT() condi-

tion to see that it was error free. The ASSERT() statement was then
tested in a variety of application scenarios, such as the one shown
in Figure 5, and always halted the system appropriately.

7.2 Event Logging - A Case Study
During our implementation, the event tracing capability of NodeMD

helped us to pinpoint the location of an actual legacy bug in MOS,
previously only detected by unpredictable behavior and code analy-
sis. Several MOS programmers had identified a bug where certain
thread behavior would unknowingly initiate a context switch while
within an interrupt handler. Specifically, when an interrupt handler
posted a semaphore that unblocked a thread, the kernel would initi-
ate a thread dispatch to immediately process the unblocked thread
(if that thread was at the front of the ready queue). In most cases,
this would not pose a problem because a blocking operation in the
other thread would immediately context switch back to the handler,
which would then exit. However, under certain conditions, MOS
programmers reported that a visible 1 second delay would occur
between the entry and return from an interrupt handler. We iden-
tified the occurrence of this phenomenon while testing this system.
The before-and-after traces from the buggy code and then the cor-
rected code are shown in Figure 6.

Figure 6: Before-and-after traces from a bug in MOS, where
an application could unknowingly context switch out of an in-
terrupt handler.

Notice the highlighted traces in the first trace section. Areas out-
lined in red (dark gray on b&w prints) are execution within the
interrupt handler, while areas outlined in yellow (light gray in b&w
prints) are outside of the handler. When a timer fires (48), its han-
dler procedure is called (49) and the semaphore is posted (50), un-
blocking a thread waiting for that semaphore. Immediately we rec-
ognize the system context switch out of the handler (51) before the
trace reports a procedure return. This indicates our handler has not
yet returned, which results in several unpredicted conditions, one
of which is the new running thread remaining in interrupt-disabled
context initiated by the handler. Fortunately within a few instruc-
tions the other thread goes to sleep (53) and context returns to the
handler (54), which then returns (55). Clearly there could have
been a serious context error if the external thread did not block im-
mediately.

In the second trace section, the same set of code is run with
the OS bug fixed. Since the section outlined in red (dark gray on
b&w) contains the entire interrupt handler routine without a context
switch, we have verified that the bug has been fixed.

In this example, the event logging system of NodeMD provided
a sufficiently accurate picture of the fault despite only encoding
events at 4 bits/event. We could discriminate between system code
being executed within and outside of the interrupt handler, which
was all the precision we needed to locate the bug. The detail pro-
vided by the system’s event trace was also sufficient to confirm that
the corrected code had fixed the bug.

7.3 Event Logging Overhead
One of the most difficult questions posed by our system is the op-

timal event trace size. How can we most efficiently use our limited
memory to log only useful data? In some cases simply covering all
events within the period of each thread is acceptable, in others more
extensive information is necessary. In general, the factors that in-
fluence our buffer “burn rate” are entirely application specific: the
number of threads and software timers, the number of function calls
within that concurrent code, and even the types of functions called
all determine the required size for a certain time window.

Table 1 identifies the number of traces logged in MOS routines
commonly called by sensor applications. A simple call to blink
the LED only logs 2 traces, whereas a more complex procedure
such as com recv timed, which calls the radio, can conditionally
generate up to 32 traces. Complex applications will call a mixture
of these functions, resulting in varying impact of logging on the
applications.

Routine Traces Required
mos led blink 2
printf 13 + n chars
dev read 18
com send (CC2420) 23
com recv 31
com recv timed 32 (success)
com recv timed 12 (timed out)

Table 1: Trace requirements for common application-called
routines in MOS.

Let’s examine the impact of logging on a relatively advanced real
world sensor networking application that we used in the FireWxNet
deployment [3]. This is a very complex application encompass-
ing nearly all of the features in MOS. Within the application, two
threads are spawned. In the first, data is read from 4 different sen-
sors into a packet buffer and sent over the radio every 1 second. The
other thread repeats a blocking receive on a 5 second timeout. Dur-
ing the execution of these threads, a wind sensor hardware interrupt
fires periodically, and three software timers retrieve data from the
wind sensor, update the neighbor table, and handle state transitions
for power management. After 1 minute of awake time, the node
changes to a low power sleep state for the following 14 minutes.

In our experiments, we measured that processing a single iter-
ation of FireWxNet’s sending and receiving threads, plus all con-
current timers, required approximately 250 traces. Even one itera-
tion of just the sending thread, without timers, required 98 traces,
resulting from several dev read() calls followed by a com send().
Given that the scheduled awake time for this duty cycle leads to at
least 60 iterations of the sending thread, logging the entire awake
period would require around 6000 traces, or 3000 bytes using our

approach. Given our memory limitations of 4 KB, which must also
allow for execution space in RAM for the application, we would
have to accept less than a full accounting of the entire awake pe-
riod.

This example illustrates the extreme challenges that we face in
designing a system to efficiently log events on resource-constrained
nodes. Even at only 4 bits/event, the tracing mechanism reaches
the capacity of our event trace buffer during one awake period and
begins overwriting older events in the circular buffer. In our exper-
iments, we have found that the event trace of only the most recent
events nonetheless retained enough useful information to assist in
locating the bug. However, more detailed studies need to be per-
formed to determine how to most efficiently log the most useful
events. We leave this as an open topic for future research.

7.4 General Overhead
How do our algorithms actually impact system performance?

One of NodeMD’s primary objectives is to remain lightweight and
as unintrusive as possible to the underlying application and OS.
Evaluating the simplest blink led application against the FireWxNet
application from our case study, the requirements of NodeMD are
quite reasonable. For reference, the blink led application uses a
single thread to frequently toggle an LED (the FireWxNet code is
described in the above section). Table 2 shows a comparison be-
tween the original data in MOS followed by the compounded over-
head with NodeMD included.

Application Original MOS NodeMD Included
blink led RAM 585 887
blink led ROM 25212 28768
FireWxNet RAM 780 1072
FireWxNet ROM 30204 34470

Table 2: Overhead analysis in MOS, see text for details.

Using these results we see an increase in main memory require-
ments corresponding to 92 bytes + trace buffer size + 10 bytes per
checkpoint. These experiments assume 1 checkpoint per applica-
tion thread, which translates to an extra 10 bytes in the blink led
application and 20 bytes in the FireWxNet application. The 92
bytes of static overhead is accrued from necessary globals in the
implementation, including a 67 byte packet buffer. We also see
an additional 1̃4% increase in program memory, a result of the
parser-added debugging code. The added amount is dependent
on the complexity of the application. Given the features added
by NodeMD, and the flexibility to tailor several trace buffer de-
tails to minimize overhead, we argue that the requirement costs of
NodeMD are far outweighed by its contributions.

One of the important qualities of the logging system is that it
does not impact program timing in a substantial way. In effect, each
log operation takes either 43 or 79 cycles, depending on whether
the log crosses a byte boundary or not. Although it is possible that
this is enough to change timing of the program, this is a fairly small
number. By comparison, calling the mos led on() function costs 35
cycles. Writing a trace is equivalent to turning on between one and
two LEDs, which is essentially invisible to the application.

The logging operation itself is a straightforward sequence of in-
structions and is unlikely to dramatically change the order of execu-
tion, as opposed to a printf statement that initiates several blocking
operations, context switches, and hardware interrupts.

Likewise, the detection of stack overflow uses only 32 cycles to
check at each function call, which is even less likely to noticeably
impact timing.

Although exhaustively checking procedure entry points and fre-
quently calling traces can become expensive, generally WSN appli-
cations are considered to have a relative abundance of CPU cycles
[23]. The FireWxNet application spends the majority of its awake
cycle idling; waiting for software timers, data available on the ra-
dio, and data available on the ADC. Therefore the small number of
cycles introduced by NodeMD should be easily absorbed without
affecting application timing.

NodeMD’s impact on battery life can be divided into two modes.
During normal program and system execution, NodeMD does not
use the radio, flash memory, or even LEDs to log events and/or
execute its detectors, so all of its impact on battery life is related
to the memory and processor’s battery use. Since NodeMD intro-
duces only a modest number of additional instructions for logging
and/or detection, we do not expect any substantial impact on battery
life due to NodeMD’s execution during normal operation. When
NodeMD drops into debug mode, the impact on battery life is likely
to be more substantial. Spending time keeping the node and radio
awake to support interactive debugging by the remote programmer
will significantly drain energy resources and limit overall node life-
time. The amount of time spent diagnosing a problem would de-
pend on the pattern of diagnosis by the programmer. However, the
urgency to debug the detected software fault may override immedi-
ate energy concerns on the failed node.

8. FUTURE WORK
We have identified several key areas for future work as we have

presented the paper. In addition, NodeMD needs more in situ test-
ing, in order to prove its capabilities in deployed environments. Our
plan is to instrument a WSN field application in the near future with
NodeMD. We would like to be able to assess the accuracy of such a
NodeMD deployment in capturing bugs that occur in the field. We
would also like to demonstrate the generalizability of the proposed
detection algorithms and notification architecture of NodeMD to
other embedded OS’s such as micro-C OS.

Having recently modified the approach NodeMD takes for stack
overflow detection to include red zoning, more extensive testing
is needed to determine what red zone sizes are most applicable
to WSN applications. Including a static analyzer/preprocessor to
identify and add at compile time the red zone requirements for ap-
plication and OS procedures is a direction for future development
on the NodeMD project.

NodeMD’s approach for stack overflow detection is based on
source based instrumentation. Although it is a reasonable assump-
tion today that we have access to all source code in the system, that
assumption may no longer hold in the future as commercial enti-
ties increase their presence in the area. Due to that, an interesting
direction for future work is binary instrumentation.

We are interested in extending NodeMD so that it is equipped to
detect illegal memory writes, which are another class of software
faults that can also paralyze a node. Recent work has offered the
approach of software-based memory protection [1], which we plan
to investigate.

A potentially useful function for NodeMD would be to allow the
equivalent of a request to “preserve the buffer at the moment when
this pattern is encountered, and stop logging once when buffer space
is exhausted”. This would allow us to create snapshots of situations
in which the error occurs a long time before the node enters debug-
ging mode (e.g. error manifests as crash 10 minutes later), and
would allow us the maximum usable data in the event buffer, at

the expense of debugging information before and long after the set
time.

Securing NodeMD involves several issues that were beyond the
scope of this initial study. First, the wireless communication would
have to be secured, i.e. authenticated and/or encrypted reporting of
the event trace and sending of queries. It is still an open research
question how best to secure routing in wireless sensor networks.
Second, any remote code updates would need to be signed by the
base station and efficiently authenticated by the node to avoid viral
propagation. Early WSN security research focused on symmetric
key approaches, but more recent work has explored the viability of
public key techniques.

9. CONCLUSIONS
This paper has described NodeMD, a comprehensive system that

implements detection, notification, and diagnosis of software fail-
ures in remote wireless sensor nodes. NodeMD is motivated by the
need to minimize the high cost of on-site redeployment of failed
nodes. NodeMD is capable of detecting a broad spectrum of soft-
ware faults as they occur and before the completely disable a node,
including stack overflow, deadlock, livelock, and application-specific
faults. We present several specific detection algorithms: stack over-
flow detection; and application-defined thread checkpoints that act
as custom software watchdog timers within each thread. We intro-
duce a debug mode that halts the embedded system upon detection
of a failure, and notifies a remote user via a summarized event trace
in the form of a bit vector. Our system closes the loop by permitting
interactive queries from the remote human user for more diagnostic
state. We present detailed implementations and experimental anal-
ysis of all of our fault detection algorithms in unit testing and in the
real world application FireWxNet. We described how NodeMD has
proven useful in practice in finding and diagnosing two real world
bugs in the code of Mantis OS.

10. REFERENCES
[1] R. Kumar Rengaswamy, E. Kohler, M. Srivastava,

“Software Based Memory Protection In Sensor Nodes”.
Proceedings of the Third Workshop on Embedded Sensor
Networks (EMNETS), May 2006.

[2] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J.
Anderson, “Wireless sensor networks for habitat
monitoring”. In 1st ACM International Workshop on
Wireless Sensor Networks and Applicatoins (WSNA 2002),
Atlanta, GA, September 2002.

[3] C. Hartung, C. Seielstad, S. Holbrook and R. Han,
“FireWxNet: A Multi- Tiered Portable Wireless System for
Monitoring Weather Conditions in Wildland Fire
Environments”, Proceedings of the Fourth International
Conference on Mobile Systems, Applications, and Services
(MobiSys), 2006, pp. 28-41.

[4] G. Werner-Allen, K. Lorincz, M. Ruiz, O. Marcillo, J.
Johnson, J. Lees, and M. Welsh. “Deploying a Wireless
Sensor Network on an Active Volcano”, IEEE Internet
Computing, Special Issue on Data-Driven Applications in
Sensor Networks, vol. 10, no. 2, March/April 2006, pp.
18-25.

[5] Crossbow Technologies: “Mica2 Series (MPR4x0)”,
available at http://www.xbow.com.

[6] Q. Wang, Y. Zhu, L. Cheng, ”Reprogramming Wireless
Sensor Networks: Challenges and Approaches”, IEEE
Network, vol. 20, no. 3, May/June 2006, pp. 48-55.

[7] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B.
Shucker, C. Gruenwald, A. Torgerson, R. Han, ”MANTIS
OS: An Embedded Multithreaded Operating System for
Wireless Micro Sensor Platforms, ” ACM/Kluwer Mobile
Networks & Applications (MONET), Special Issue on
Wireless Sensor Networks, vol. 10, no. 4, August 2005,
guest co-editors P. Ramanathan, R. Govindan and K.
Sivalingam, pp. 563-579.

[8] C. Han, R. Kumar, R. Shea, E. Kohler, M. Srivastava,
“SOS: A dynamic operating system for sensor networks”.
Proceedings of the Third International Conference on
Mobile Systems, Applications, And Services (Mobisys),
2005.

[9] J. Hui, D. Culler. “The Dynamic Behavior of a Data
Dissemination Protocol for Network Programming at
Scale”. Proceedings of the 2nd International Conference on
Embedded Networked Sensor Systems, SenSys, 2004.

[10] L. A. Phillips, “Aqueduct: Robust and Efficient Code
Propagation in Heterogeneous Wireless Sensor Networks,”
Master’s thesis, Univ. CO, 2005.

[11] B. Meyer: Applying “Design by Contract”, in Computer
(IEEE), vol. 25, no. 10, October 1992, pages 40-51.

[12] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler,
and D. Estrin. “Sympathy for the Sensor Network
Debugger”. In the Proceedings of 3rd ACM Conference on
Embedded Networked Sensor Systems (SenSys 05), Nov.
2005. San Diego, California.

[13] G. Tolle and D. Culler. “Design of an
Application-Cooperative Management System for Wireless
Sensor Networks.” Proceedings of the Second European
Workshop on Wireless Sensor Networks (EWSN), 2005.

[14] K. Whitehouse, G. Tolle, J. Taneja, C. Sharp, S. Kim, J.
Jeong, J. Hui, P. Dutta, D. Culler. “Marionette: Providing
an Interactive Environment for Wireless Debugging and
Development”. In The Fifth International Conference on
Information Processing in Sensor Networks (IPSN’06).

[15] R. Wilson, “Shedding light on the Mars rover malfunction”,
EE Times, 02/20/04.

[16] Serial line. http://www.pa.msu.edu/hep/d0/ftp/
run2b/l1cal/hardware/channel link tester/channel link tester.txt

[17] H. Tokuda, C. Mercer, “ARTS: A Distributed Real-Time
Kernel”, ACM SIGOPS Operating Systems Review, vol.
23, issue 3, July 1989, pp. 29-53

[18] D. Wilner, “WindView: a tool for understanding real-time
embedded software through system vizualization”,
Proceedings of the ACM SIGPLAN 1995 workshop on
Languages, compilers and tools for real-time systems,
1995, pp. 117-123

[19] O. Spinczyk, A. Gal, W. Schrder-Preikschat, “AspectC++:
An Aspect-Oriented Extension to C++”, Proceedings of the
40th International Conference on Technology of
Object-Oriented Languages and Systems (TOOLS Pacific
2002), Sydney, Australia, 2002

[20] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J. Loingtier, J. Irwin, “Aspect-Oriented
Programming, Proceedings of the European Conference on
Object-Oriented Programming, 1997, vol.1241, pp.220242.

[21] J. Regehr, A. Reid, K. Webb, “Eliminating stack overflow
by abstract interpretation”, ACM Transactions on
Embedded Computing Systems (TECS) vol. 4 , Issue 4,
November 2005, pp. 751-778

[22] JTAG distributor. www.digikey.com
[23] L. Gu, J. Stankovic, “t-kernel: A Naturalizing OS Kernel

for Low-Power Cost-Effective Computers”. In Proceedings
of 4th ACM Conference on Embedded Networked Sensor
Systems (SenSys 06), Nov. 2006. Boulder, Colorado.

[24] A. Dunkels, N. Finne, J. Eriksson, and T. Voigt. “Run-Time
Dynamic Linking for Reprogramming Wireless Sensor
Networks.” ACM SenSys, 2006.

[25] W. McCartney, N. Sridhar, “Abstractions For Safe
Concurrent Programming In Networked Embedded
Systems”. In Proceedings of 4th ACM Conference on
Embedded Networked Sensor Systems (SenSys 06), Nov.
2006. Boulder, Colorado.

[26] GCC, the GNU Compiler Collection, ported to the AVR
platform. http://gcc.gnu.org/

[27] K. Bradley, J.K. Strosnider, “An application of complex
task modeling”, Real-Time Technology and Applications
Symposium, 1998. Proceedings. Fourth IEEE, Jun 1998,
pp. 85-90.

[28] Glenn Reeves, “What really happened on Mars ?”,
available at
http://research.microsoft.com/ mbj/Mars Pathfinder/
Authoritative Account.html.

