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ABSTRACT
In this paper we present FireWxNet, a multi-tiered portable
wireless system for monitoring weather conditions in rugged
wildland fire environments. FireWxNet provides the fire
fighting community the ability to safely and easily mea-
sure and view fire and weather conditions over a wide range
of locations and elevations within forest fires. This previ-
ously unattainable information allows fire behavior analysts
to better predict fire behavior, heightening safety consider-
ations. Our system uses a tiered structure beginning with
directional radios to stretch deployment capabilities into the
wilderness far beyond current infrastructures. At the end
point of our system we designed and integrated a multi-
hop sensor network to provide environmental data. We also
integrated web-enabled surveillance cameras to provide vi-
sual data. This paper describes a week long full system
deployment utilizing 3 sensor networks and 2 web-cams in
the Selway-Salmon Complex Fires of 2005. We perform an
analysis of system performance and present observations and
lessons gained from our deployment.

Categories and Subject Descriptors
J.2 [Computer Applications]: Physical Sciences and En-
gineering—Earth and atmospheric sciences; C.2.1 [Compu-
ter-Communication Networks]: Network Architecture
and Design—Wireless Communications

General Terms
Design, Experimentation, Performance, Reliability
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1. INTRODUCTION AND MOTIVATION
Wildland firefighting has long been a dangerous, though

necessary task during the summer months across the globe.
Last year over 77,000 fires burned nearly 7 million acres
in the U.S. alone costing over $890 million in suppression
costs[13]. With tens of thousands of firefighters dispatched
to fight these fires each year, safety is the number one pri-
ority.

Fire behavior can change rapidly due to a variety of envi-
ronmental conditions such as temperature, relative humid-
ity, and wind. Moreover, these environmental conditions can
differ significantly between topographical features such as el-
evation and aspect. Hence, the ability to accurately monitor
these environmental conditions over a wide area becomes of
paramount importance.

One of the primary factors influencing safety in wildland
firefighting is the ability to accurately predict the fire’s be-
havior. Such predictions are usually based on a combination
of current observations, spot weather forecasts provided by
the National Weather Service, and recorded weather obser-
vations from the previous few days. While such predictions
can give a general picture of expected fire behavior for a
region, actual fire behavior can vary tremendously over rel-
atively small changes in elevation due to varying weather
conditions. For example, it is generally expected that as el-
evation increases air temperature decreases. However, well
known phenomena such as thermal belts and temperature in-
versions can cause bands of warmer air to exist at higher
elevations. These conditions, which normally occur in the
evenings and overnight, are caused when cold air near the
surface of the mountains moves down into the valleys forc-
ing the warmer air to rise. As the warmer air rises it gets
trapped by continuously moving air above the ridge tops.
The ability to detect thermal belts and inversions is of great
importance to the fire community. Since temperatures in
these regions stay warmer with lower relative humidities
than surrounding areas, fires tend to stay more active.

There are a variety of methods that the fire community
currently uses to measure weather conditions. Perhaps the
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Figure 1: A fire fighter takes wind measurements
using a belt-weather kit.

most common way of measuring weather on a fire is the use
of a belt-weather kit as seen in Figure 1. Generally, one
firefighter is selected per squad to carry such a kit, take
measurements every hour or so, and report the data back
to base camp. It typically takes between 5 and 10 minutes
to collect accurate results and report them. The incident
commanders back at base camp use this information to help
determine where to position units and when to pull them
away from a fire. However, there are several drawbacks to
this method of measurement. First, it only provides data for
areas where squads are located. Squads are highly mobile,
and their locations are generally determined by fire intensi-
ties and suppression goals. Therefore, it is unlikely they will
cover wide ranges of area or elevation. Also, this simple yet
important task can be easily forgotten when battling a fire.

The United States Forest Service (USFS) also maintains
a network of around 2,200 permanent Remote Automated
Weather Stations (RAWS)[18] to help track weather con-
ditions for a given area. In addition to temperature, wind
speed and direction, and relative humidity, RAWS stations
also measure precipitation, barometric pressure, fuel mois-
ture and temperature, and soil moisture. While the data
collected from the RAWS is extremely useful, they tend to
be sparsely located. For example, there was only one RAWS
located in the vicinity of the Selway-Salmon Complex Fires
where we deployed our system. Furthermore, the positioning
of such stations is not always representative of the surround-
ing area. The RAWS station in our fire complex was placed
at the Hell’s Half Acre peak located at an elevation of almost
2,500m. Many of the fires were burning much lower in the
valleys closer to 1,500m. Also, RAWS anemometers, which
measure wind speed and direction, are placed a minimum of
6.1m from the ground. Most forest fires tend to burn along
the ground, only occasionally torching a tree, and 6.1m may
not be representative of wind speeds nearer to the ground.
Another problem with RAWS stations is that their large
size prevents them from being portable. Even if they were
smaller, there is a fairly lengthy process to register them

with the USFS, and their data interfaces do not support
mobility. The RAWS relay their data to a Geostationary
Operational Environmental Satellite (GOES). The satellite
then transmits the data to the Weather Management Infor-
mation System (WIMS) where the data is made available
online.

Working together with fire fighting teams and fire re-
searchers, we set out to build a system that could report
weather conditions over a variety of elevations from any-
where within the fire environment. Together, we formulated
a set of requirements that drove our design:

• Weather Data
Our system needed to be able to report temperature,
relative humidity, and wind speed and direction. These
elements have the greatest immediate influence on fire
behavior. The data needed to reported about once
every half-hour to an hour, 24 hours a day.

• Visual Data
We needed to have ’eyes’ on the fire 24 hours a day.
Generally, personnel leave the fire before dark, and the
overnight fire behavior is guessed based on weather
conditions. Also, seeing a fire is the only way to know
how it is actually behaving; therefore, we wanted to
give Incident Command a readily accessible view of
current conditions.

• Elevational Gradient in Rugged Terrain
Our system had to be able to provide data over a wide
range of elevations in potentially extremely rugged moun-
tainous and forested terrain. Our goal was to be able
to cover at least one kilometer of elevation.

• Long Range Remote Monitoring
With no available electricity and no communication in-
frastructure, our system needed the ability to transmit
data upwards of 150 Km in order to relay information
from the deployment areas to Incident Command.

• Power Efficient
Since all of our nodes were in rough terrain and many
were only reachable in a timely manner by helicopter,
it was very important that our network function for
long periods of time. In examining the length of time
fires typically burn, we determined that 3 weeks per
set of batteries would be sufficient. Further, all sen-
sor nodes needed to run with AA batteries to com-
ply with informal fire standards. Currently, almost all
electronic equipment used on wildland fires employ AA
batteries.

• Simple and Robust
Generally, our network would be set up by people with
minimal experience using sensor nodes or embedded
computers. Hence, we needed our system to be simple
to deploy and use. Further, since our network was
deployed in a fire environment, it needed to continue
to function in the presence of node failures.

• Low Cost
Though we attempted to deploy in safer areas to min-
imize harm to our equipment, losing nodes is always a
possibility in an environment surrounded by fire. As
such, we needed hardware that could be easily and
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cheaply replaced. A loose goal was for the overall cost
of the hardware and software to not exceed $20,000.

• Portable
Fires usually only last between 2-8 weeks, and they
rarely strike in the same area more than once until
many years have passed. Thus, our system needed
to be portable so we could deploy at multiple fires in
different locations throughout the fire season.

We successfully converted our requirements into a fully
implemented system that we deployed with the help of the
Northern Rockies #1 FUMT (Fire Use Management Team)
in the Bitterroot National Forest in Idaho (USA) in 2005.
There were over 50 lightning strike fires in that area that
burned over 35,000 acres and became known as the Selway-
Salmon Complex Fires. The system we deployed consisted
of 5 long range links, 3 sensor networks consisting of a total
of 13 nodes, 5 wireless access points, and 2 web cameras.
The access points and web cameras were deployed for just
over 3 weeks, while the sensor networks were deployed for
just over a week. We referred to our system as the ’Fire
Weather Net’. Generally, people abbreviated ’Weather Net’
as ’WxNet’, which is how our system received its name.

Every member of our deployment team received wildland
fire training and achieved at least a minimal certification as
a FireFighter Type 2 (FFT2). With this certification each
member also received a Red Card which authorizes the in-
dividual to work in a wildland fire environment. Achieving
this certification required a week-long course in fire safety
and organization, as well as a physical test where each mem-
ber had to carry a 45 pound (20 Kg) pack 3 miles (4.82 Km)
in under 45 minutes.

The remainder of the paper is organized as follows: Sec-
tion 2 talks about prior related work in this area. In section
3 we talk about design and implementation of FireWxNet.
Section 4 presents results from our deployment as well as
observations and lessons learned from our deployment. Sec-
tion 5 discusses future directions we intend to pursue with
our system. Finally, section 6 concludes the paper.

2. RELATED WORK
Applications using wireless sensor networks have become

increasingly common. Over the past few years, the capabili-
ties of these deployments has evolved tremendously from the
initial single-hop ’sense and send’ deployments to scalable
multi-hop deployments. This section discusses applications
related to our work and describes how our contributions fur-
ther this area of research.

From the onset of sensor network technology, monitoring
environmental conditions or habitat monitoring has been
at the forefront of the application space. In one of the
first successful demonstrations of a sensor network deploy-
ment, researchers at the University of California, Berkeley
deployed a sensor network at Great Duck Island off the coast
of Maine[10]. They placed their sensors in burrows and
used heat to detect the presence of nesting birds, provid-
ing invaluable data to biological researchers. Additionally,
their work provided helpful observations about many deploy-
ment aspects such as performance, routing, and topology
construction.

Similarly, researchers for the Center for Embedded Net-
worked Sensing deployed a sensor network into the James

Figure 2: Some deployment locations could only be
reached by helicopter.

Reserve Forest in California with purposes from soil tem-
perature monitoring to tracking wildlife[3]. Their work ex-
tended sensor network research by using multi-hop routing
and multiple, heterogeneous nodes. Other habitat monitor-
ing deployments that have been used for monitoring spe-
cific species include a system to monitor Cane Toad popu-
lations[8], and a system for tracking the movements of Ze-
bras[9].

On a smaller scale, a sensor network was recently deployed
on a single redwood tree using 33 nodes to cover roughly
50m[17]. With this unique deployment researchers were able
to map the differences in the microclimate over a single tree.

Deployments in rugged terrain and under extremely harsh
conditions have just begun to be developed. A group of
researchers from Harvard recently deployed a sensor net-
work on an active volcano in South America to monitor
seismic activity and similar conditions related to volcanic
eruptions[19].

Most relevant to our project, researchers from the Uni-
versity of California, Berkeley demonstrated the feasibility
of sensor networking technology in a fire environment with
their FireBug application[5]. They deployed a 10 node net-
work in a field and successfully measured important envi-
ronmental conditions such as relative humidity and tem-
perature as a flame front passed during a prescribed burn.
Though our nodes are designed for the encounter, we stayed
away from attempting to track or measure flame fronts. The
fire community currently utilizes high-tech airborne infrared
sensors to track flame fronts and intensities over very large
scale areas.

In contrast to many of these application deployments, our
sensor network is distinguished by its especially rugged and
unique deployment environment, its emphasis on robust de-
sign, and its relatively sparse deployment. The task of de-
ploying our in-situ network was particularly severe, given
the rugged mountainous and forested terrain over which
FireWxNet was spread. Our network covers a unique topol-
ogy which has not been studied before, ranging from sub-
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stantial and sharp elevational differences to a fairly wide cov-
erage area spanning about 160 square Kilometers. The net-
work had to be capable of providing both wide area commu-
nication coverage and fine-grained local weather sensing cov-
erage. The large elevational differences between our nodes
resulted in very different radio propagation models from typ-
ical flat-ground, short distance, or in-building deployments.
In many cases, the terrain was so inaccessible that nodes had
to be brought to the peak of a mountain by helicopter, as
in Figure 2, and then deployed down the steep slope of the
mountain. An important design point was therefore robust-
ness in all aspects of the system, ranging from robust phys-
ical equipment to robust network routing protocols. The
helicopter itself further imposed weight and volume limits,
i.e. helicopters cannot carry much weight at high altitudes.
Only a limited number of sensor nodes with housings could
be ferried to the top of the mountain. Once at the deploy-
ment locations, firefighters needed to navigate steep terrain
which made it impossible to carry more than two or three
sensor packages (nodes, sensors, and shelters) at a time. As
a result, our weather sensor networks sought to maximize
the information return for each placed sensor node, i.e. our
networks were strategically and sparsely deployed to cover
as much meaningful terrain with as few nodes as possible.
We could not fall back upon dense sensor deployments to
provide fault tolerance and redundancy both for the sensed
data and for relaying of that sensed data.

3. SYSTEM DESIGN AND
IMPLEMENTATION

We developed a tiered system of wireless technologies be-
cause such an integrated architecture was well suited to our
design requirements for long range communication coverage,
local area weather sensing coverage, portability, low cost,
and robustness. Deploying a wireless weather network hun-
dreds of kilometers into the wilderness proved quite a chal-
lenge. Our system needed to relay data from many points
of interest to our base camp (Incident Command) through
an area with no internet connectivity or even electricity. At
the base of our system was the satellite uplink we used for
internet access. The satellite dish provided internet access
for our entire system as well as all of the administration at
Incident Command. The dish was then connected to our
backhaul network tier, a series of radios with directional an-
tennas that created wireless links from 3-50 Km long. Fi-
nally, at the end of each set of radios we connected the
weather network. The weather network consisted of multi-
ple sensor nodes with wireless links up to 400m as well as a
steerable webcam. Figure 4 shows a typical example of the
topology for a deployment site in our system.

3.1 Network Setup
For our deployment, we used five long distance wireless

links in our backhaul, three sensor networks, and two web-
cameras. The cameras were set up at Hells Half Acre and
Spot Mountain. The sensor networks set up at Hells Half
Acre, Kit Carson, and Spot Mountain consisted of six nodes,
five nodes, and two nodes respectively. Figure 3 gives an
overview of our entire topology in relation to the fires, su-
perimposed on a topographic map of the area. The Hells
Half Acre (D), Kit Carson (E), and Spot Mountain (F) lo-
cations were strategically chosen to maximize the value of

Figure 3: Our network setup relative to a few of the
major fires in the area (shown as darkened areas).
Locations and equipment were as follows:
A) Incident Command: Backhaul Link, WAP,
Satellite
B) USFS District Office: Backhaul Link, WAP
C) Boulder Peak: Backhaul Links(3), WAP
D) Hell’s Half Acre: Backhaul Links(3), WAP,
Webcam, Sensor Net
E) Kit Carson: Backhaul Link, WAP, Sensor Net
F) Spot Mountain: Backhaul Link, WAP, Webcam,
Sensor Net

the weather information retrieved due to their proximity to
multiple fires. The Boulder Peak (C) location was chosen
since it was the highest peak with a good line-of-sight to
base camp. The nodes were placed sufficiently near to the
fires of interest, but not so near as to imperil the firefighters
or the equipment for the duration of the observation.

3.2 Backhaul Network Tier

3.2.1 Hardware
Since base camp was set up near a small ranger station,

we had access to electricity, but the nearest internet con-
nection was nearly 65 Km away. To solve this problem, we
used a small portable satellite transceiver for our internet
connection. The satellite, manufactured by Skycasters[15],
provided the camp with speeds of 128 kbps up and 512
kbps down. After initial configuration, the satellite required
almost no setup as it automatically searched for the best
satellite link and oriented itself appropriately. The satellite
connected to our backhaul simply using standard ethernet
through an ethernet switch.

For the main links in our backhaul we used two different
types of radios made by TrangoBroadband Wireless: The
Trango Access5830 and the Trango M900S Access Point /
Subscriber Module Radios (AP/SU). Our primary radios
were the Access5830s. These radios were strictly point-to-
point directional radios that used polarized directional an-
tennas to achieve a range of roughly 50 kilometers. They
operated at 10 megabits per second in the frequency range
of 900Mhz-930Mhz. For shorter links we used the M900S
AP/SU radios. These radios formed a point-to-multipoint
setup where the subscriber modules all communicated with
a single access point. To increase the communication dis-
tance of these radios we attached an external Yagi antenna
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Figure 4: System Overview: Radios with directional antennas were used at each peak and at the basecamp
to relay data from our sensor network and webcam.

Figure 5: The Backhaul link set up on Boulder Peak.
To the near side is an Access5830 with a directional
antenna. On the far side is a M900S connected to a
Yagi antenna. Below are two of the solar panels we
used to provide power.

which extended the range to just over 32 kilometers. These
radios also operated in the 900Mhz-930Mhz range, but were
slightly slower at 3 megabits per second. All the Trango
radios used the standard 802.11 and TCP/IP protocols for
communication, and were manually given IP addresses prior
to deployment.

Though the 900Mhz spectrum gave us increased range
in our wireless hops as compared to 2.4Ghz, it did present
a small problem. Our sensor nodes also operated in the
900Mhz range, and the initial configuration values of each
were close enough to interfere with each other. In fact, our
entire base camp was so flooded with signal that the CSMA
protocol implemented on the sensor nodes would back off
indefinitely. We fixed this issue by configuring the Trango
radios to communicate using the 924Mhz frequency.

We mounted the radios and antennas to a pole 1-2 me-
ters off the ground which was then mounted to a secure base.
The radios were all powered with a power-over-ethernet setup
using a 24V power supply. Once set up, the Access5830 ra-
dios required a single user at each end in order to fine-tune
the antenna direction. Since the M900S radios were many-
to-one, only one user at the SU was required to fine tune
the connection. All of the radios provided both a web-based
and a command-line telnet interface to help the user align
the antennas to ensure maximum signal strength. Figure
5 shows an example setup. Once aligned, the radios func-

tioned exactly as a wired ethernet link. At each hop radios
were connected to the next hop via an ethernet switch.

The ethernet switches at each hop were Linksys WRTG45
4-port Wireless Access Point (WAP) switches. This meant
that every radio hop in our network also provided standard
802.11 WiFi internet access to any units in the area. We fre-
quently took advantage of this feature since we could moni-
tor and manage all of our sensor nets and web cameras from
anywhere in proximity to our network.

3.2.2 Power
With no access to electricity between the Incident Com-

mand and any hop in our backhaul, we decided to use solar
panels and large batteries to power the various equipment.
At each hop in our backhaul we set up two solar panels, a
24V and a 12V, and four 12V batteries. During the day the
solar panels produced enough energy to both run the sys-
tem and charge the batteries, while at night the system ran
solely from the batteries. Even with the rapidly decreasing
daylight during the fall in northern Idaho we were able to
keep all of the radios fully powered and connected for the
length of our deployment. Further, all of the switches, ac-
cess points, and web cameras were powered by the batteries
and solar arrays as well.

To protect the equipment from moisture, animals, and
other hazards we placed the switches, access points, and
base stations inside a large plastic waterproof briefcase made
by Pelican. We drilled holes in the back of the case to run
wires, and then sealed the holes with electrical tape. Since
the cases were rather thick black plastic, we worried that
with the temperatures reaching upwards of 33oC, the equip-
ment would overheat. Especially worrisome was the lack of
airflow inside the cases since none of the equipment inside
contained even a single fan. However, we found this to not
be a problem even when the cases spent most of the day in
direct sunlight.

3.3 Weather Network Hardware
The weather networks consisted of a number of sensor

nodes, a webcam, and a small embedded computer running
linux. We tested our system using two different webcams.
The first was a Sony SNC-RZ30N and the second was a
Panasonic KX-HCM280. The basic functionality described
below was the same for both cameras. We set up each in-
side a protective case with a clear plastic dome to protect
the equipment from the elements while still allowing clear
viewing as shown in Figure 7(c). Once the webcam was
mounted, it only needed to be powered on and connected to
an ethernet switch. The cameras required only minimal con-
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figuration such as setting the camera’s IP addresses prior to
deployment. The webcams ran their own web servers which
allowed users to connect to it from any web browser. The
camera controls were also accessible through the web inter-
face and allowed the camera to rotate a full 360 degrees and
tilt up to 180 degrees. The Panasonic provided a 21x opti-
cal and 2x digital zoom, and a picture resolution of 640x480.
The Sony had a 25x optical and 300x digital zoom and pro-
duced pictures with a resolution of 736x480. Both cameras
provided an infra-red night vision feature and could deliver
video at up to 30 frames per second. Additionally, they each
required a 12V power source and used the batteries and solar
arrays.

3.3.1 Base Station
Our base station provided the very important link be-

tween our sensor network and our backhaul. Figure 6 shows
how the base station bridged the gap. The device we chose
for our base station was the Soekris net4801 [16]. We chose
this board for its small form factor, minimal power con-
sumption, and numerous readily available peripherals. The
Soekris operates with a 233Mhz NSC SC1100 processor and
has 32 Mbyte SDRAM soldered on board. For onboard pe-
ripherals it contains three 10/100 Ethernet Ports, two Se-
rial ports, and one USB port. The Soekris also boasts a
CompactFLASH socket and a PCI slot. Another benefit
of this system is its wide range of operating temperatures.
According to the specifications, the Soekris can operate at
temperatures between 0-60oC. Additionally, the Soekris can
run at a wide range of power levels from 6-28V. During our
deployment we ran the boards at 12V.

Figure 6: A block diagram of our weather network.
The webcam, Soekris, and trango radio all con-
nected to the switch via wired ethernet. The sensor
node connected to the Soekris via a USB-to-serial
cable.

We ran a stripped down version of Gentoo Linux from a
512Mb CompactFLASH card for our operating system on
the Soekris boards. The Soekris connected to the backbone
through standard, wired ethernet. However, with the PCI
slot we could have attached a wireless ethernet card and
used that to connect to the backbone. The wireless ethernet
option would have given us more freedom in the placement of
our base station. This was not necessary in our deployment
since our base stations were out of harms way, however it
is conceivable that in future deployments we would want to
place the base stations closer to the fire and at the same time
place the more expensive Trango radios and solar panels in a
safer location where they would not be exposed to fire. We
connected the Soekris to the sensor network through the
USB port. We attached a node to a MIB510 programming
board and connected the programming board to the Soekris
through a USB-to-serial converter.

3.3.2 Sensor Nodes
For the nodes in the senor network we chose the Mica2

platfrom made by Xbow. The Mica2s utilize AA batteries
for their power source. We cannot overstate how much this
simple fact helped our system gain quick acceptance by the
fire community as nearly all electronic devices used by fire
crews operate with AA batteries. The Mica2 is controlled by
an Atmel ATMega128 8-bit processor running at 7.37Mhz.
For communications, the Mica2 uses the Chipcon CC1000
radio operating at 900Mhz. To allow for different sensing
packages, the Mica2 contains an external 52-pin connector.

We developed our own sensor package using the Xbow
MTS101 Basic Sensor Board and soldering the necessary
sensors to it. The MTS101 comes with a built in temper-
ature sensor, the TSI 44006, which when calibrated is ac-
curate to within 0.2oC. For our relative humidity sensor we
chose the Humirel 1520 RH sensor due to its superior accu-
racy at low relative humidity levels. Fire activity can change
rapidly with even small changes at low RH, so a high degree
of accuracy when the relative humidity was below 30% was
very important. We encountered one issue with the Humirel
1520 in that it required a 5V power source, but the two AA
batteries on our board only produced a maximum of 3V.
To solve this issue we developed a small power regulator
board which took a 10mA current as input and output a
5V power source. Finally, for our anemometer we chose the
Davis Standard Anemometer. The anemometer provided
wind direction accurate to within 7 degrees, and wind speed
to within 5% of the reported value. While knowing the lo-
cation of the nodes was very important, we decided not to
outfit our sensor package with GPS units. Even small GPS
units tend to use an enormous amount of energy, and would
significantly decrease the life of our system. Since the nodes
are immobile, we decided to just carry a hand held GPS
unit and record the locations of the nodes at the time of
deployment.

To protect the sensor nodes from outdoor elements but
still allow them to accurately record weather data, we built
20 custom enclosures as shown in figures 7(a) and 7(b).
The enclosures needed to protect the node from moisture
and heat, but still expose the sensors to the outdoor condi-
tions. To accomplish this we designed the enclosures to have
three ventilated sides, an open bottom, and a combination
vented ceiling and roof. The sides were made with down-
sloping slits much like blinds in order to allow ample airflow
through the apparatus while still protecting the node from
falling rain. The node was attached to the ceiling of the box
with heavy duty velcro. The ceiling had three 4cm diameter
holes drilled in it to prevent the unit from trapping rising
hot air. The roof was made slightly larger than the ceiling
and separated by a .6cm inch spacer to allow air to escape.
We painted the units white in order to protect the equip-
ment from solar radiation heating. The box was then affixed
at 1.5m from the ground to a 4cm diameter wooden dowel
which was mounted in a metal tripod. The temperature
and relative humidity sensors were located inside the box
attached to the sensor node. The anemometer was mounted
at the top of the dowel at a height of 1.8m. The height from
the ground not only helped to alleviate the communications
burden caused by Fresnel Zones (discussed in section 3.4.1),
but also provided the nodes protection from heat damage
caused by the fire.
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(a) An enclosure we built for our sensor nodes.
The open bottom, vented ceiling, and slotted
walls allowed the sensors to accurately record
conditions.

(b) Nodes were attached to the ceiling with in-
dustrial velcro. All sensors faced down towards
the open bottom.

(c) One of the webcams used in our deployment

Figure 7: Weather Network Hardware

3.4 Weather Network Software
Constructing a reliable, self-healing, multi-hop network

for an actual deployment presents many design implications
and challenges that no simulator can fully emulate. Prob-
lems such as interference and asymmetric links are not only
hard to simulate, but also vary greatly from deployment to
deployment as we show in section 4. In order for our system
to function we needed to design a robust mechanism which
would ensure, with high probability, that our data would
reach our base stations even in the varying presence of in-
terference and asynchronous links. Rather than implement
a protocol with guaranteed delivery, we developed a best-
effort converge-cast protocol similar to [11, 14]. In place of
reliability mechanisms we chose to send messages multiple
times, in effect creating a forward error correction mecha-
nism. In this way we reduced the need for every packet to
reach the base station during a certain time period to only
needing a single packet per node.

Rather than creating a single monolithic application, we
built our sensor network on the MANTIS operating sys-
tem[2]. MANTIS is a multi-threaded, embedded operating
system closely resembling Unix. We chose this operating
system for several reasons: First, it provides easy to use
interfaces to all of the features of the nodes such as commu-
nications and energy-efficient scheduling. Second, MANTIS
can be used on multiple platforms and has already been
ported to the Mica2, MicaZ and TelosB nodes. Finally, all
applications for the MANTIS operating system are written
in the standard C programming language.

3.4.1 Deployment Issues
The fairly sparse nature of our deployment, our desire to

utilize radio links as long as possible, and considerations
about the topology of the area we deployed in led to some
interesting deployment challenges. Our deployments were
fairly linear and some had very little, if any, overlap of com-
munication between nodes that were not adjacent to each
other. This meant that we needed to be sure bi-directional
links existed between nodes to ensure that data from nodes
further down in the chain would reach our base station.
Large changes in elevation between nodes and dense for-
est and/or underbrush further complicated our deployment.
Due to the large change in elevation we found that the range
of the radios was much greater than if the nodes were both
placed on level ground. Most other deployments have used
dense clusters of nodes and placed them at distances of less
than 30m to ensure connectivity. In our deployment, for ex-
ample, our average distance between nodes was 138m with
our longest link nearly 393m. We were able to achieve such
large distances by exploiting a phenomena called Fresnel
Zones[20], which is basically what causes multipath inter-
ference. Fresnel Zones are a measurement of the phase dif-
ference between the reflections of radio waves between trans-
mitter and receiver. Being out of phase can cause a canceling
effect and significantly weaken the ability to receive the sig-
nal. With Fresnel Zones, the Earth is the primary cause for
such reflections because the ground itself acts as a major
obstacle. Therefore, the further the nodes are located from
the ground, the less interference encountered. Most of the
nodes in our deployment sent their radio signals from peaks
to valleys and along steep hillsides where there was far less
ground to cause interference. In informal testing we were
able to establish a radio link of .71Km (.44 miles) between
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two mica2 nodes placed on peaks with a deep valley between
them. Finally, due to sometimes dense vegetation between
the nodes the range of the radio was significantly shortened.
We found, however, that we were usually able to find a good
line-of-sight by moving just a few feet in either direction.

3.4.2 Deployment Mechanism
Taking into account the above considerations, we devel-

oped a simple yet effective deployment mechanism which
enabled us to verify some connectivity between our nodes.
When powered on, the nodes would start by sending LO-
CATE packets at the rate of 1 packet per second. The nodes
would also listen for LOCATE packets and respond with a
similar FOUND packet. Each of the LOCATE and FOUND
packets were the size of the largest data packet sent in the
network. This was because we found that smaller packets
tend to transmit further distances with less packet loss than
larger packets. Every time a LOCATE packet was not an-
swered within 2 seconds by a FOUND packet the red LED
would blink. Conversely, every time a FOUND packet des-
tined for the appropriate node was received the green LED
would blink. The nodes would stay in this state in order to
allow for other nodes to be placed.

Once all of the nodes were placed, the base station was
turned on and it began broadcasting control packets. All
of the other nodes would forward the control packets us-
ing a standard flooding protocol. Upon receiving a con-
trol packet all LEDs would turn off to save power and the
nodes would begin their duty cycle as explained in section
3.4.4. We found this deployment mechanism to be extremely
simple and very efficient. Fire fighters deploying the nodes
needed only to examine the LEDs to determine connectivity.
We found quite often that a movement of a few feet to the
right or left significantly increased or decreased connectivity.
One downfall to our mechanism was that a user would not
receive verification when adding a node to a currently de-
ployed network. An easy workaround was simply to restart
one or more of the nearest nodes which were known to be
connected. They would then be back in their STARTUP
phase and would send and receive the appropriate packets
to aid in placing the new node. Then, when the rest of the
network woke up during a duty cycle, the nodes would all
rejoin the network.

3.4.3 Routing
Once the base station was powered on, it began send-

ing out control packets (or beacons) for one minute at the
rate of one every four seconds. These beacons served multi-
ple purposes in our network including route discovery, fault
tolerance, and time synchronization. Multiple beacons were
sent during awake periods since our network did not use any
guaranteed delivery mechanisms. The beacons were prop-
agated through the network by a simple directed flooding
algorithm where nodes retransmit control packets when the
distance to base (DTB) of the originating node is less (closer
to base) than its own. This can lead to nodes receiving
and/or sending multiple copies of the same packet. How-
ever, due to the relatively long period of the packets, we
found that more packets were better than fewer packets, i.e.
we erred on the side of more redundancy to provide fault-
tolerant dispersion throughout the network. When nodes
sent data packets to the base station they used the same
protocol in reverse. Data packets were forwarded only if the

sending node’s DTB was greater than the receiver. This
again can create duplication at an exponential rate, but due
to the linear nature of our networks only 6.9% of packets
were ever duplicated. Furthermore, due to the sparse na-
ture of our networks we found duplication actually helped
to ensure packets were transmitted to the base.

3.4.4 Duty Cycling and Time Synchronization
In order to save power, our entire network ran on a duty

cycle. While a duty cycle based on a wake-on-radio ap-
proach[6] would be ideal, current technology only allows
such schemes to work in extremely short ranges (under 3m).
Thus, we implemented our network with a 15 minute pe-
riod where the nodes would sleep for 14 minutes, wake up
and send packets for 1 minute, and then fall asleep again.
This resulted in a 6.67% duty cycle. Our technique differed
from most current duty cycling techniques where the nodes
wake up much more frequently, perform one task, and fall
asleep as in [7]. Ours woke up far less frequently, performed
many tasks, and then fell asleep. However, since sleeping
nodes would not forward packets, we needed to ensure that
our entire network ran on the same 15 minute duty cycle.
To accomplish this we developed a loose, relative time syn-
chronization mechanism which performed like a simplified
version of [12]. To save energy and minimize network traf-
fic, we re-used the control beacons to serve the purpose of
time synchronization as well. Each beacon contained a se-
quence number which the nodes used to determine when the
next sleep cycle would begin using the simple equation (60
- 4 * SeqNo). The sequence number counted from 0 to 15
and then reset at the next interval. This was only calculated
for the first beacon received during an awake period. Once
nodes awoke, they waited to send any data until they heard
a beacon. This allowed the beacons to propagate relatively
unobstructed by interference, and saved power in the nodes
by not sending packets when other nodes were not listening.
This mechanism kept our network time synchronized with
the base station at all times. Drift within the network was
not a problem because the nodes would resynchronize with
the base every 15 minutes. Thus, only the drift of the base
station had to be monitored relative to real time. We coun-
tered drift in the base station by using the Network Time
Protocol (NTP) daemon included with Gentoo.

3.4.5 Fault Tolerance
The last purpose of the beacons was to provide fault tol-

erance. During an awake period, the nodes in the network
would listen for beacons from nodes with a DTB less than
their own. If the nodes did not receive a beacon in 10 sec-
onds (2 and 1/2 beacon cycles), they would reset their own
DTB and listen for any beacon. Upon hearing a new beacon
the node would reconnect to the network with a new DTB.
This mechanism was useful as it allowed nodes to be re-
set, have their batteries replaced, create routes around failed
nodes, or be moved (which actually happened in our deploy-
ment) and still continue to function in the network. During
a personnel change, the new fire fighters switched two of our
nodes so that their IDs would better reflect their placement
on the hill. Our network recovered perfectly and there were
no gaps in the data, the only difference being that their hop
counts were swapped. However, we did notice some inter-
esting phenomena due to changing asymmetric links and/or
interference. This is discussed in section 4.
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Figure 8: Temperature and Relative Humidity graphs for the length of our deployment.

3.5 Gathering the Data
In order to transmit all the data from the network to base

camp, we used a number of freely available tools. The data
was gathered at the Soekris and written into a tab delineated
text file. A cron-job ran in the background which ftp-pushed
that text file to a computer at Incident Command every 15
minutes just after each round of the network duty cycle.
Alternatively, users could ssh or sftp into the Soekris and
manually retrieve the logs at any time. Once at a local
machine the data was generally imported into a spreadsheet
or database program to be analyzed. In the future we intend
to write all of our data directly to a database for easier
retrieval and analysis.

4. EVALUATION
The success of our system was quickly demonstrated on

the second morning of our deployment. Both visual and
weather data we collected were used to locate an inversion
which was announced by the fire behavior analyst in the
morning briefing. They continued to use our data and an-
nounce safety precautions for the length of our deployment.
In addition to those immediately useful results, we collected
over 80,000 data packets containing measurements from 5
different sensors as well as 7 separate pieces of information
on routing topology. This gave us a total of nearly 1 million
individual data points to analyze. We present an evalua-
tion of the scientific results, as well as an evaluation of our
network performance over the course of the deployment.

A few notes about the data being analyzed:

Figure 9: Close-up of a temperature inversion
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• The weather network at Hell’s Half Acre (Nodes 14,
20, 22, 23) was deployed from 9/4 at 13:03 until 9/9
at 15:13. The network recorded no data on 9/4 from
14:49 to 15:34 due to a problem with the base station.
Due to a faulty sensor package, node 20 reported only
0 for all weather data from initial deployment until 9/5
at 13:00 when the sensor package was replaced.

• The weather network at Kit Carson (Nodes 40, 41, 42,
43, 44) was deployed from 9/2 at 19:15 until 9/10 at
19:19. The network was down between 14:10 and 15:53
on 9/3. During this time we reorganized the network
for better coverage. The network recorded no data on
9/4 between 10:47 and 18:37 due to a problem with our
base station. The network reported no data between
9/8 at 22:55 and 9/10 at 17:03 due to the batteries
dying on the node connected to the base station.

• The weather data we present is between 9/4 and 9/9
when both weather networks were fully functional. The
network analysis covers the entire time each network
was active.

• Though our routing algorithm had the possibility of
duplicating packets, only 6.9% of all packets were du-
plicated. Duplicates were removed for all routing and
weather analysis.

• Our relative humidity sensor peaked at 90%, so all
values above that threshold were reported as 90%. Low
relative humidities (below 30%) were more important
to our study.

• Though we collected wind data, we omit it from our
discussion as its average and variation were negligible
during our deployment.

• We ignore packet statistics from the Spot Mountain
deployment as it was a single-hop deployment. Since
there were no crews working in that area, we only
placed one node at that location to supplement our
camera with the localized weather data.

4.1 Finding a Temperature Inversion
Figure 8 shows the temperature and relative humidity

changing over the length of our deployment. As expected,
the relative humidity decreased while temperature increased
throughout the day, and the converse is true in the evening
once the sun began to set. One thing to take note of in
both graphs is the large difference in oscillation of both
temperature and relative humidity between the different el-
evations. The lower elevation sensor nodes reported very
large changes in temperature throughout the day, upwards
of 30oC, whereas the upper elevation nodes reported much
smaller changes in the range of 10oC per day.

The general expectation of temperature is that it decreases
as elevation increases. This trend can be observed each day
during our deployment. However, other than the evening
of 9/5, our data indicates that a fairly significant inversion
set in each night around roughly 20:00 and did not lift until
11:00-12:00 the next day. A closer view of one such inversion
can be seen in figure 9. The inversion begins when the tem-
perature at the lower elevation nodes drops below that of the
upper elevation nodes. As shown in the graph, once the in-
version set in the temperature at the upper elevations stayed

(a) Visual verification of the morning’s temperature
inversion from one of our webcams.

(b) Also captured by one of our webcams: the warmer
air above the inversion allows this fire to burn actively
throughout the night.

Figure 10: Effects of a temperature inversion cap-
tured by one of our web cameras.

relatively constant, while the temperature in the lower eleva-
tions droped significantly. For example, the temperature on
the Hell’s Half nodes stay in the range of 10oC whereas the
nodes at Kit Carson drop as low as -3oC. Also of note, there
is almost no difference in temperature between the nodes
at 2298m and 2469m. However, the lower nodes show just
how quickly the temperature changes in the inversion. At
Kit Carson, the node at 1500m reported temperatures 9oC
less than the node located only 150m above it. These large
variances in temperature have a great effect on fire behavior.
The higher temperatures at the higher elevations mean that
fires will continue to burn throughout the night as shown in
figure 10(b). However, the much colder temperatures at the
lower elevations means the fire will settle down and simply
smolder overnight until the temperature increases again the
next day.
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On mornings with inversions, we were also able to quickly
identify the inversions with our web cameras. Figure 10(a)
shows a good example of the smoke from the fires getting
caught just under the inversion. With a topographical map
and the provided images we could quickly identify peaks in
the images and estimate the level of the inversion. Correlat-
ing the visual image with the data from our weather network
allowed us to more closely pinpoint the inversion layer.

4.2 Network Performance
The two weather sensor networks were deployed as shown

in Figures 11(a) and 11(b). The vertical vs. horizontal dis-
tances between our sensor nodes are shown. Though each
of our deployments performed similarly in packet reception
rate, each of our deployments performed extremely different
in terms of building and maintaining their network topol-
ogy. Our network at Hell’s Half Acre maintained a steady
topology which never changed during the life of the deploy-
ment. The topology of our Kit Carson deployment, however,
changed significantly and often during our deployment.

We designed our network to send 60 data packets within a
1 minute time interval every 15 minutes. However, we esti-
mate that we were only able to send 50 data packets during
that time period due to some timing limitations. For ex-
ample, the RH sensor required 200ms of settling time once
it was activated before it could produce an accurate read-
ing. This caused the delay between sending packets to be
1.2 seconds rather than 1 second. Additionally, we used a
CSMA MAC protocol which would back-off in the presence
of interference. This would further reduce our total possible
packets sent.

We received 87276 packets out of an expected 218,200
resulting in a 40% overall yield from our network. Figure
12(b) shows the day by day yield per node in our network.
This performance is on par with other sensor network de-
ployments and correlates to previous studies in multi-hop
routing in sensor networks [22]. However, since each node
transmitted the same sensor data for all of its packets dur-
ing an awake period, we only needed to receive 1 of those
packets to consider a send successful. Using that metric and
counting only unique packets per node per 15 minutes, our
unique yield for our deployment was a relatively high 78%.
This redundancy over provisioned in favor of fault tolerance,
but it also provided us with invaluable data about the effec-
tiveness of our routing scheme.

In terms of overall performances, each of our networks
performed similarly to one another. The Hell’s Half deploy-
ment resulted in a 47% overall yield and a 74% unique yield.
The Kit Carson deployment resulted in a 36% overall and an
80% unique yield. The Hell’s Half deployment numbers are
artificially lowered by Node 22, which we purposely placed in
a location where our deployment mechanism was alternating
between red and green LEDs, i.e. this node was only inter-
mittently connected. We placed Node 22 as such to test the
difference in performance between it and the well-connected
nodes that were only flashing green LEDs. Figures 12(a)
and 12(b) show how each node performed over the course of
our deployment. Some trends to notice are that nodes that
were further from the base station (both physically and by
hop count) performed worse than those that were closer.
This result is expected since with each hop in the network
the chances for dropping a packet increase. Also, especially
with nodes further from the base, nodes generally performed

(a) Network topology at Hell’s Half Acre

(b) Network topology at Kit Carson

Figure 11: Elevation vs distance profiles of both sen-
sor networks

worse over time. We hypothesize that these results are re-
lated to decreasing battery life since nodes are not as ’loud’
and therefore are more easily interfered with over time.

4.2.1 Hell’s Half Deployment
When we were deploying, we expected that Node 23 would

form a link with Node 22, however Node 20 and Node 23
maintained communication throughout the deployment of
our network even though they were located nearly 400m
from one another. As such, Nodes 22, 23, and 14 all main-
tained a distance of 2 hops from the base station while Node
20 always maintained a single hop. However, about 20% of
the time Node 20 reported itself as ’lost’, in that it had not
heard a control beacon in the specified time period. This
further reduced our packet counts since ’lost’ nodes would
not forward data packets in order to prevent loops within
the network. Because of its close proximity to the base sta-
tion, we assume that its inability to receive control packets
was caused by interference from other nodes.
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(a) Unique yield per node per day (b) Total yield per node per day

Figure 12: Packet yields from our deployment

Figure 13: Variability in network topology

4.2.2 Kit Carson Deployment
As shown by the graph in figure 13, the topology of the

Kit Carson deployment changed frequently over the course
of the deployment. We attempted to correlate these changes
over time, however most of the changes only lasted for a few
seconds. This seemed to indicate that there were rapidly
changing, random asymmetric links in our network quite
often. Due to the rapid variability, it appears these asym-
metries lasted only on the order of seconds or tens of sec-
onds, and were most likely caused by interference between
the nodes. These results are similar to other studies on ra-
dio irregularities[23]. As such, in both networks our routing
algorithm was a little overaggressive in attempting to re-
connect to the network. Algorithms that function on link
or route quality such as [4, 21] would be more appropriate
for such situations where interference causes short duration
asymmetries, and are an aspect of our future work.

4.3 Battery Performance
Figure 14 shows the performance of Node 40 during our

deployment. The jump near the end of the graph shows
when the batteries were replaced. Though we had imple-

Figure 14: Battery Life

mented our duty-cycling mechanism, we had improperly set
the sleep-mode on the processor to idle rather than deep-
sleep. Hence, during our deployment our batteries lasted
a maximum of 5 days. We have since corrected the issue
and a deployment within our lab lasted over 5 weeks, well
beyond our stated goal of 3 weeks. However, our mistake
exacerbated a different issue we had not considered for our
deployment: temperature has a significant effect on the bat-
tery’s available power. As shown in the graph, each day
as the temperature dropped the performance of the battery
dropped significantly. As the temperature rose, the available
power in the battery rose as well. In freezing temperatures,
nodes could appear to ’die’ only to begin reporting once
they warmed up again. This never occurred during our de-
ployment, as nodes physically connected to our base station
always depleted their batteries and stopped recording first.
This was caused because the nodes used an additional 14mA
when they were connected to a programming board regard-
less of sleep-state. The programming boards, however, of-
fer an external power connection which we plan to use in
future deployments to alleviate the programming board’s
extra power requirement. This oscillation correlated with
temperature could create problems in our and other deploy-
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ments as battery life will effectively be significantly reduced.
The network could only be able to report for portions of the
day when the temperature is above a certain temperature
threshold related to the remaining battery level.

5. DISCUSSION AND FUTURE WORK
We learned a great deal through our collaborative effort

with the fire fighters and fire researchers. While many as-
pects of a system may work well in simulation or small-scale
tests, actual deployment of our system taught us the most.
Many assumptions that hold true in simulation or devised
tests disappear during actual deployments. In short, the
biggest lesson we learned is that there is no substitute for
the practical experience of actually deploying a full system.
In this section, we review the lessons we learned and discuss
future directions we intend to take this work.

With our system, we accomplished the following:

• Demonstrated that a sparsely deployed heterogeneous
wireless system can provide meaningful scientific data
to the fire community. This data consisted of environ-
mental measurements as well as visual images.

• Deployed over a wide range of elevations in rugged
terrain.

• Implemented effective multi-hop routing, power sav-
ing duty-cycling, and fault tolerant robustness in our
sensor networks.

• Developed our system for roughly $22,000, slightly more
than our cost estimate.

With overall packet loss rates averaging over 50% for multi-
hop sensor networks, routing protocols must be wisely cho-
sen to improve success. In our case, we chose to resend
the packets multiple times which improved our success rate
to nearly 80%, but at the cost of some efficiency. We are
currently experimenting with protocols containing small re-
liability mechanisms such, as hop-to-hop ACKs, hoping that
in future deployments we can cut down on the number of
packets we send. This should, in turn, save energy and help
our system last even longer. Additionally, fewer packets will
also hopefully reduce the amount of interference within our
networks.

Even with high loss rates, we found we were fairly over-
whelmed with the amount of raw data coming through our
system in real-time. We wrote a handful of fairly simple
python scripts to transform the raw data into meaningful
and usable information. However, we believe there is still
much to be explored in terms of creating applications to
represent such wide arrays of data to end-users. For ex-
ample, we hypothesize that our system would benefit most
from a web application that could display not only current,
but also historical conditions (including images) to a large
number of distributed users. Piping the data directly to a
database would be a good start, but how to present the data
remains an open question.

Quite surprising in our deployment was the ability of our
sensor nodes to create wireless links over 10 times further
than any current deployment. These long range links were
made possible by the large elevational differences between
our nodes, which greatly reduced interference caused by
the ground. With such variety in our links, a simple vi-
sual deployment mechanism was necessary to help ensure

bi-directional links existed between the sparsely deployed
nodes in our network. More sophisticated deployment mech-
anisms may help to further increase overall yields in sensor
networks. We intend to leverage this knowledge in future
deployments to help determine node placement and build
routing protocols which can take advantage of similar topo-
graphical features.

With sensor networking technology still rapidly evolving,
we intend to migrate our application to new mote platforms
which have better radios, better sleep capability, and more
functionality such as the TelosB. We hope such improve-
ments, especially with the radios, will also further improve
our packet yields.

To help improve the remote management capabilities of
our network, we would like to incorporate remote code up-
dates into our system. The Mantis OS already supports this
feature, and we hope to exploit it in future deployments.

In the field, we used belt weather kits to calibrate our sen-
sors. This proved to be effective, but a rather long process
even for a relatively small number of nodes. In the future,
we intend to use a wind-tunnel to calibrate all of our sensors
prior to deployment.

Though our system was deployed in an uncontrolled fire
environment, our system could easily be used for site mon-
itoring prior to and during prescribed burns. For future
deployments we intend to include more sensors such as a
tip-bucket to measure precipitation and a solar radiation
sensor to measure the sun’s affects on fuels. After adding
such sensors it will be possible to deploy our system for an
even greater variety of studies.

The portability of our system was tested only on one set
of fires. Our entire system, including backhaul network and
weather nodes, was deployed and then retrieved successfully.
We were planning to redeploy FireWxNet to other fires later
in the fire season, but a season-ending event (the first snow
of the season) intervened. We hope to redeploy next spring.

Fire behavior analysts already have and are continuously
developing a multitude of fire models[1] they use to predict
fire behavior for a wide variety of situations. We hope that
with future deployments of our system we can continue to
work closely with fire analysts to incorporate our data into
such models to help improve their accuracy.

6. CONCLUSIONS
Just as long-range wireless technology has been praised as

a means of bringing communications to remote areas, short
range sensor networks have been lauded as a means of gath-
ering large amounts of data from small areas. We blended
these two ideals into an actual real-world deployment that
combines the best of both technologies. In so doing, we built
a system that successfully presented an elevational gradient
of environmental conditions in wildland fire environments.
This previously unattainable information will help fire be-
havior analysts make better predictions about fire conditions
and create a ’more aware’ environment in the fire commu-
nity, which will in turn help make fighting forest fires safer
in the future.
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