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ABSTRACT
Cyberbullying in Online Social Networks (OSNs) has grown
to be a serious problem among teenagers. While a consid-
erable amount of research has been conducted focusing on
designing highly accurate classifiers to automatically detect
cyberbullying instances in OSNs, two key practical issues
remain to be worked upon, namely scalability of a cyberbully-
ing detection system and timeliness of raising alerts whenever
cyberbullying occurs. These two issues form the motivation
of our work. We propose a multi-stage cyberbullying detec-
tion solution that drastically reduces the classification time
and the time to raise alerts. The proposed system is highly
scalable without sacrificing accuracy and highly responsive
in raising alerts. The design is comprised of two novel com-
ponents, a dynamic priority scheduler and an incremental
classification mechanism. We have implemented this solu-
tion, and using data obtained from Vine, we conducted a
thorough performance evaluation to demonstrate the util-
ity and scalability of each of these components. We show
that our complete solution is significantly more scalable and
responsive than the current state of the art.

CCS CONCEPTS
• Networks → Online social networks; • Human-centered
computing → Social networks; • Applied computing → Soci-
ology;
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1 INTRODUCTION
Unprecedented growth in the popularity of OSNs, especially
among teenagers, has unfortunately resulted in significant
increase in cyberbullying. The main differences between bul-
lying and cyberbullying are the facts that the Internet can
help the perpetrators of cyberbullying hide their identities,
cyberbullying can be incessant because of the availability and
access of the Internet, and the possibility of cyberbullying
being viral and exposing the victims to an entire virtual world
[29]. Numerous instances [5] and devastating consequences
of cyberbullying [1, 8, 27] have led researchers to explore
detection of cyberbullying incidents in OSNs like Ask.fm,
Instagram, Vine, Twitter etc. [3, 12, 13, 19, 23, 28]. These
works have mostly followed the methodology of collecting
and labeling data from OSNs and designing cyberbullying
classifiers. Past work has also investigated the issue of identi-
fying imbalance of power between perpetrators and victims,
which is a key feature of bullying, and distinguishing between
cyber-aggression and cyberbullying [16], thus paving the way
for highly accurate classifiers. Figure 1 shows an example of
cyberbullying in Vine.

While progress has been made on the accuracy of classifiers
for cyberbullying detection, there are two key practical issues
that have largely been ignored to date. The first issue concerns
the scalability of the cyberbullying detection solutions. OSNs,
of course, involve an enormous amount of data, on the order
of several hundred gigabytes per day. For example, it has
been reported that for Vine around 39 million videos have
been shared since it was introduced [26] while for Instagram,
the amount of shared media is 40 billion[18].

The second issue concerns the timeliness of raising alerts
whenever cyberbullying incidents are suspected. Cyberbully-
ing is different from traditional, face-to-face bullying, because
it can occur 24/7, and perpetrators can be anonymous and
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Figure 1: An example of cyberbullying on Vine.

have easy access to sophisticated tools to launch cyberbully-
ing attacks. Furthermore, the consequences can be disastrous
and it is extremely important to provide the necessary sup-
port to the victims as early as possible. So, a timely detection
of cyberbullying is of paramount importance, so that an alert
can be raised as soon as possible.

In this paper, we propose a multi-stage cyberbullying
detection solution designed to improve the scalability and
responsiveness of cyberbullying detection. To the best of our
knowledge, we are the first to propose a scalable and responsive
solution to cyberbullying detection in OSNs. A key property of
the solution is that it achieves sufficient classification accuracy
while accomplishing these two goals. The solution consists of
two key components, namely, a dynamic, multilevel priority
scheduler for improved responsiveness, and an incremental
feature extraction and classification stage for scaling. Using
online social networking data from Vine, we demonstrate
the utility of both of these components, and show that our
complete cyberbullying detection solution is significantly
more scalable and responsive than the current state-of-the-
art. We make the following important contributions:
∙ We propose an incremental computational design for fea-

ture extraction and classification that reuses previous clas-
sification results to reduce overhead with minimal impact
on accuracy.

∙ We propose a dynamic, multi-level priority scheduler that
assigns high preference to potential cyberbullying media-
sessions, thereby improving responsiveness of the solution.

∙ Using real world data from Vine, we demonstrate that our
integrated system substantially improves the scalability of
cyberbullying, making cyberbullying detection feasible for
Vine-scale social networks.

∙ We further demonstrate how our system scales to monitor
much larger, Instagram-scale networks.

2 RELATED WORK
The majority of research on cyberbullying detection has fo-
cused on improving the accuracy of cyberbullying detection
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Figure 2: Scalable and responsive cyberbullying detection ar-
chitecture.

classifiers[6, 15, 22, 30]. Several cyberbullying detection ap-
plications have been developed in recent years [7]. Most of
these applications (e.g., Mobicip) introduce parental control
including category blocking, time limits, Internet activity re-
ports, blocked phrases, and YouTube filtering, whereas others,
e.g. iAnon and GoGoStat search for specific profanity words.
Specific keyword based research on event detection have also
been performed [20, 24] where crime and disaster events were
extracted after hitting the Twitter API for a list of specific
keywords(tornado, earthquake) to get the tweets related to
an event. Cyberbullying, in contrast, is much more subtle.
As shown in [13], profanity can not solely be an indicator of
cyberbullying. So it is important to make use of the definition
of cyberbullying and take into account the repetitive nature
of perpetrated aggressiveness and imbalance of power while
building an accurate cyberbullying detection solution.

As far as we know, none of the prior research has addressed
the issue of computational scalability and/or responsiveness
in the context of cyberbullying detection. Scalability has
been, however, an important factor for other research areas
such as misbehavior detection in online video chat services
[4, 32] and cyber-attack detection in communities [11].

3 DESIGN OVERVIEW
Our goal of this research is to propose a cyberbullying detec-
tion system with two key characteristics, namely, scalable to
handle large OSNs without sacrificing accuracy and timeli-
ness of raising an alert when a cyberbullying instance takes
place. To this aim, we face two key challenges. First, how to
scale up the system while retaining a reasonable accuracy.
Second, how to design a system so as to make sure an alert is
raised as soon as a cyberbullying instance takes place while
monitoring large number of media sessions (media and its
associated comments in Instagram or Vine). In the following
subsections, we describe the two components of our system
that address these challenges.
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𝑋𝑛 : saved feature vector values for 𝑛 comments from
before for all features;

𝛿𝑛 : new comments to be processed;
𝑋𝑖

𝑛 : feature vector value of 𝑖-th feature for 𝑛
comments;

𝑋𝑖
𝛿𝑛 : feature vector value of 𝑖-th feature for 𝛿𝑛

comments;
|𝑋𝑛|: number of total features;
forall 𝑖 in 1, 2, ..., |𝑋𝑛| do

𝑋𝑖
𝑛+𝛿𝑛 : 𝑋𝑖

𝑛+Compute(𝑋𝑖
𝛿𝑛);

end
Algorithm 1: IncrementalFeatureExtraction()

3.1 Incremental Classifier
Our first challenge is to build a cyberbullying detection clas-
sifier that is scalable when it comes to time and computing
resources while also retaining sufficient accuracy performance.
While sophisticated deep learning classifiers have been re-
cently introduced to solve complex problems with high accu-
racy [14, 17], they come up with considerable computational
baggage. For example, in [14], the authors used deep learning
in real time to process one 1080p video frame in 644ms using
Samsung S7 with leveraging high performance GPUs (12
GPUs) and 4GB memory. While it is tempting to use deep
learning for our system, we want our classifier to be able to
leverage lightweight computational resources (Amazon AWS
free tier 1GB memory, for example). In addition to being
computationally lightweight, we also want our classifier to be
faster than the slower current state-of-the-art AdaBoost[23]
(as shown later in Table 1) to classify when new comments
for a media session comes in, without sacrificing accuracy.
We see that both these cases (deep learning and AdaBoost),
while being highly accurate, does not meet two key challenges,
being computational resource-wise lightweight and efficient,
respectively.

Our approach towards lowering computational resource
scalability and improving efficiency while retaining sufficient
accuracy is to incorporate incremental computation [9, 10]
into the design of the potential classifier. Incremental com-
putation reuses data from previous stages within the current
stage, thus resulting in less computational complexity. Tradi-
tional classifiers need to execute a full run as each new datum
arrives, e.g. new comment for a media session. Instead, our
approach reuses previous stages’ results and combines them
with the new comments, thereby reducing computational
cost, rendering the solution scalable. We seek ways to apply
this incremental approach to both feature extraction and
classification stages of the potential classifier. To this aim,
we seek to employ a classifier that, during feature extraction
stage, uses features which, by nature can be incrementally
linear in the sense that once the values corresponding to these
features have been computed for the first 𝑛 comments, then
when 𝛿𝑛 new comments arrive, we only have to compute the
individual feature vector values for the new 𝛿𝑛 comments

while reusing the values for the previous 𝑛 comments to com-
pute the overall feature vector for the 𝑛+ 𝛿𝑛 comments. This
dramatically reduces resource and computation cost because
this approach is driven by 𝛿𝑛 at each run instead of 𝑛+𝛿𝑛. Al-
gorithm 1 provides a pseudo-code of the incremental feature
extraction algorithm for our incremental detector. Similarly,
the candidate classifier should also be able to leverage this
incremental approach during classification stage once the
feature vectors are extracted from new data.

We found that Logistic Regression (LR) was the most
promising classifier that met all these aforementioned cri-
teria. LR works as follows: if we have 𝑛 features 𝑎𝑖, 𝑖 =
0, 1, 2, 3..., 𝑛 − 1, after training, LR assigns a weight 𝑤𝑖, 𝑖 =
0, 1, 2..., 𝑛 − 1 to each of those features, and then computes
the combined features value 𝑐 = 𝑛−1

0 𝑎𝑖𝑤𝑖. This value is fed
to a sigmoid function with output ranging from 0 to 1[31].
The way we can leverage incremental computation in LR is
as follows: LR takes as input a set of features 𝑋, and during
the training process, the classifier generates a set of weights
𝜃 corresponding to those features. When a new media session
comes in, the feature extraction step computes a matrix 𝑋
for that particular media session and computes 𝐶 = 𝑋𝜃,
which is then used to make the corresponding prediction. For
the incremental feature extraction sub-component, we save
the 𝑋𝑜𝑙𝑑 value for the previous 𝑛 comments, compute 𝑋𝛿𝑛
for the new set of 𝛿𝑛 arrived comments and compute the
new 𝑋 by combining 𝑋𝑜𝑙𝑑 and 𝑋𝛿𝑛 instead of computing 𝑋
all over again for all 𝑛 + 𝛿𝑛 comments. For the incremental
classification part, we only use those components of 𝑋 that
have been changed to compute 𝐶 = 𝑋𝜃 instead of doing the
full 𝑋𝜃 computation. For this purpose, we save 𝑋𝑖 × 𝜃𝑖,∀𝑖,
where 𝑋𝑖 is the 𝑖-th feature at time 𝑡. Then we only change
the corresponding feature vector value 𝑋𝑖 at time 𝑡 + 𝛿𝑡 if it
has been changed by comparing it to the previous saved 𝑋𝑖

at time 𝑡. If it has been changed, only then we take it into
the account to compute ∀𝑖 𝑋𝑖 × 𝜃𝑖 by simple addition and
subtraction instead of full scale matrix multiplication.

To be able to use incremental computation in feature ex-
traction stage, LR has to be able to make of features who
are, by nature, amenable to feature extraction. In addition,
our incremental logistic regression also has to show sufficient
efficiency and scalability over the current state-of-the-art. All
these goals have to be met without sacrificing crucial clas-
sification qualities like precision and recall. In this section,
we provided the design of incremental techniques our LR
classifier uses to scale up. From now onward, we will refer to
this incremental LR classifier as classifier. In section 4.1, we
first justify our choice of LR by comparing its execution time,
precision and recall with current state-of-the-art[23] while
making use of features that accommodate incremental com-
putation. We then justify using the incremental computation
approach in the LR by comparing its scalability performances
with standard LR that does not use incremental approach.
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3.2 Dynamic Priority Scheduler
While leveraging incremental computation helped our clas-
sifier to gain reasonable scalability, we found that it still
lacked the other key issue that a potential cyberbullying
detection system has to address: responsiveness. As the first
step towards tackling this issue, we make use of two key
observations. First, not all media sessions need to be mon-
itored equally. The theme is to apply limited resources to
where they needed the most. As most media sessions are
not bullying in nature [23], we should be able to apply our
resources on media sessions that are most likely to result in
cyberbullying. This observation makes it natural to build
a scheduler that just keeps monitoring media sessions with
high priority and discarding all the low priority ones. We
call this scheduler Static Priority Scheduler (SPS). Our in-
vestigation of the performance of SPS on Vine labeled data
[23] found its precision and recall to be 70 and 58 percent
respectively. The low recall value shows that by totally ig-
noring the media sessions that were given low priority some
stage of their lifetimes to achieve responsiveness, we miss a
significant portion of potential cyberbullying media sessions.
This trade-off between performance and responsiveness led
us to make our second observation: a media session, with
its incoming stream of comments, can slowly evolve into a
cyberbullying instance even if it started as a normal one at
its early stages of lifetime and vice versa. As new comments
arrive for a media session, it may become more or less indica-
tive of cyberbullying, depending on the nature of the newly
arrived comments. This means, it is important to examine all
sessions including the ones with low priority, as some of them
may evolve into cyberbullying sessions during later stages.

Investigation results after running SPS and the second ob-
servation formed the motivation of the design of our Dynamic
Priority Scheduler (DPS). We define two levels of priority,
namely high and low, for all media sessions and assign a
high priority to all newly created media sessions. Now our
challenge is to accommodate learning based in new comments
so as to dynamically vary each media session’s priority. Af-
ter each invocation of our incremental classifier component
(Section 3.1), a confidence value[2] of how likely a media
session contains cyberbullying is generated. We make use of
the history of these confidence values to dynamically change
a media session’s priority. The reason for using history as
opposed to just the most recent confidence value has to do
with the definition of cyberbullying. Cyberbullying is defined
as an aggressive online behavior that is carried out repeat-
edly against a person who cannot easily defend himself or
herself, creating a power imbalance [16]. To identify repeated
aggressive behavior or whether a victim can defend himself or
herself, we need to consider a much longer history than just
the most recent confidence value. We calculate the average of
all past confidence values for past classifications and current
classification of a particular media session and compare that
with a threshold value. If the average confidence value is
more than a certain threshold value, we assign a high pri-
ority to the session and if the average value is lower than

the threshold value, we assign a low priority. Algorithm 2
illustrates our priority setting algorithm using an average
confidence threshold (0.2 in this example). Upon prioritizing
the media sessions, we run our classifier component on high
priority media sessions more frequently and postpone the
classification and processing of low priority media sessions
until a later phase, thus achieving responsiveness without
sacrificing recall performances.

In this section, we outlined the motivation and design
of introducing our dynamic priority scheduler into the pro-
posed cyberbullying detection system. In Section 4.2, we
first determine what threshold is appropriate for our DPS by
comparing it with our baseline round-robin scheduler, where
all media sessions always have the same priority and, so,
monitored equally. Then we demonstrate through thorough
experiments that DPS introduces significant responsiveness
gain over round robin scheduler, thus justifying the utility of
this component.

forall media session 𝑚 do
𝐶𝑜𝑛𝑓𝑚

𝑖 : confidence value of the 𝑖-th comment
session prediction for this media session;

𝑛: number of total comment session prediction in
the confidence history;

𝐴𝑣𝑔𝑚
𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =

𝑛
𝑖=1 𝐶𝑜𝑛𝑓𝑚

𝑖
𝑛 ;

if 𝐴𝑣𝑔𝑚
𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 ≥ 0.2 and current priority is

𝐿𝑂𝑊 then
set current Priority to 𝐻𝐼𝐺𝐻;
continue;

end
if 𝐴𝑣𝑔𝑚

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 < 0.2 and current priority is
𝐻𝐼𝐺𝐻 then

set current Priority to 𝐿𝑂𝑊 ;
continue;

end
end

Algorithm 2: SettingPriority()

3.3 An Example
Consider the example shown in Figure 2, where M1 and M2
represent newly created media sessions from Vine in real time.
Three separate queues, Q1, Q2 and Q3 are maintained. The
scheduler schedules media sessions in queue Q1 (pointed to
by current head) for processing one by one in the queue order.
After a media session has been processed by the cyberbullying
detector component and if no alert is raised, it is placed at
the end of either queue Q2 or queue Q3 depending on the
new priority assigned to it (discussed in the next subsection).
If the session’s new priority is high, it is placed in queue
Q2, and if the session’s new priority is low, it is placed in
queue Q3. When all media sessions in queue Q1 have been
processed, queue Q2 becomes queue Q1, queue Q3 becomes
queue Q2, and queue Q3 becomes empty. In the example
shown in Figure 2, initially M1 and M2 are assigned high
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priority and placed in queue Q1. M1 is scheduled first and
is processed by the cyberbullying detector component. After
this processing, it is assigned a low priority, and so is added
at the end of queue Q3. M2 is scheduled next and is processed
next. After this processing, it is assigned a high priority, and
so is added at the end of queue Q2. At this time queue Q1
is empty, and queue Q2 becomes queue Q1 and queue Q3
becomes queue Q2. This process then continues. Since lower
priority processes are eventually elevated into higher level
queues, our solution ensures that no media session will starve.
From this example, the low priority media session M1 is
processed when the queue Q3 becomes Q1, thus making sure
the low priority media sessions are also processed, albeit less
frequently than its high priority counterpart.

4 PERFORMANCE EVALUATION
4.1 Incremental Classifier Evaluation
In [23], the AdaBoost classifier was reported to have the
best performance based on accuracy, precision and recall
values. Table 1 compares AdaBoost with logistic regression
in terms of precision, recall,F-1 score and running time. The
features AdaBoost classifier used were number of followers
and followings, likes and views for media sessions, media cap-
tion polarity and subjectivity [21], total number of negative
comments, summation of negative comment polarity and sub-
jectivity, total individual comment polarity, total individual
comment subjectivity, total negative words, total number of
negative comments and unigrams. For Logistic Regression,
the features we used were number of followers, followings,
media caption polarity and subjectivity,total individual com-
ment polarity, total individual comment subjectivity, total
negative words, and total number of negative comments. We
made sure that the features used by logistic regression were
incrementally linear by nature, as noted in Section 3.1. The
performance values showed in Table 1 were obtained using
10-fold cross validation on the labeled Vine data available in
[23]. We notice that although the Adaboost classifier achieves
a slightly higher precision, logistic regression achieves higher
recall and F-1 score. Furthermore, the running time of logistic
regression classifier is significantly less, more than five times
faster than that of the Adaboost classifier. The reason for
this is twofold. First, Adaboost needed unigram features to
achieve a high precision and recall, but unigram feature ex-
traction is computationally expensive. In comparison, logistic
regression is able to achieve effectively the same precision
and better recall while using features that are much more
lightweight to compute, thus yielding much lower running
time. Second, the Adaboost classifier is a meta-estimator that
begins by fitting a classifier on the original data-set and then
fits additional copies of the classifier on the same data-set
but where the weights of incorrectly classified instances are
adjusted such that subsequent classifiers focus more on dif-
ficult cases [25], thus making it computationally expensive
compared to much simpler logistic regression. Based on these
analyses, we have chosen the logistic regression classifier for
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Figure 3: Total time taken by standard and incremental clas-
sifiers as new comments come in per media session.

detecting cyberbullying in our solution. It is worth mention-
ing that we have employed other classifiers based on different
combinations of features too (Decision Tree, Random Forest,
Naive Bayes, Perceptron etc) and only present the classifiers
and feature combinations that yielded the best results.

Next, we show that leveraging incremental approach into
our logistic regression classifier significantly improves the
scalability of the execution stage. To this aim, we defined
a baseline solution as consisting of non-incremental feature
extraction and a non-incremental logistic regression classi-
fier. As new comments arrive for the baseline solution, it
would need to recompute all feature vectors from scratch,
and recompute the entire logistic regression from scratch. We
compared the total running time of the baseline solution with
an incremental solution that implemented both incremental
feature extraction and incremental logistic regression, as de-
scribed in Section 3.1. Our measurements showed that the
fraction of time taken by the logistic regression compared
with the feature extraction time was negligible, so that the
total running time was dominated by feature extraction.

Figure 3 shows the average time taken for the standard
and the incremental classifiers as the number of comments
increases in media sessions. To simplify the plot, we group
the comments in sets of 10. The time taken by the standard
classification solution goes up almost linearly with the number
of comments in the media session, since the standard solution
must recompute all features and regression weights. On the
other hand, the time taken for the incremental classifier is
basically constant every time a set of 10 additional comments
come in because it only has to compute the feature values for
the additional 10 new comments. The justification for using
10 comments-set is given in Section 4.2.

4.2 Dynamic Priority Scheduler Evaluation
In this section, we compare performances of our DPS with
round robin scheduler, a scheduler with no assignment of
priority. The aim of performing this comparison is twofold.
First, we want to show the gain of responsiveness our sched-
uler achieve over round robin scheduler. Second, we also want
to investigate several design choices crucial to building our
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Table 1: Comparison of different classifiers using the 983 Labeled Media Sessions

Classifier Precision Recall F-1 Score Time (s) Features
AdaBoost 0.7138 0.54 0.61 228 number of followers,followings, likes,views, media-caption

polarity,subjectivity[21], total number of negative comments,
summation of negative comment polarity and subjectivity,
total individual comment polarity, total individual comment
subjectivity, total negative words, total number of negative
comments and unigrams

Logistic Regression 0.71 0.66 0.68 44.42 number of followers, followings, media caption polarity and
subjectivity,total individual comment polarity, total individ-
ual comment subjectivity, total negative words, and total
number of negative comments.
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Figure 4: Left: Scheduler gain time ratio for different confidence thresholds for labeled cyberbullying media sessions. Right:
Scheduler gain time ratio for different confidence thresholds by using different comment increment sizes for different number of
media sessions using Vine labeled data [23].

scheduler to decide upon the best choice based on the metrics
of performance gain each design choice achieves over round
robin scheduler. We use labeled Vine dataset [23] to perform
the experiments.

First, we need to determine what threshold is appropriate
for our solution, as noted in 3.2. We also need to determine
with what granularity our classifier ingests batches of new
comments, because this affects the time to first alert. The
scheduler will choose a high priority media session to pass
to the classifier. In the time between classification attempts,
a media session may receive N new comments. If all N com-
ments are input to the classifier at once, and N is quite
large, we may delay recognizing cyberbullying, i.e., a burst
of negative comments may be swamped by the other positive
comments. Therefore, we need to consider comments in small
enough batches or intervals so that the classifier can catch
cyberbullying with finer granularity and raise the alert early.

The left figure in Figure 4 assesses which combination of
threshold and interval size produced the best improvement
in response time using dynamic prioritization compared with
a simple round-robin policy. The round-robin scheduler is
defined as one where media sessions are not assigned any

priority, and the scheduler simply rotates through all media
sessions, with no particular attention being paid to likely
cyberbullying sessions.

As can be seen from the figure, by using a confidence thresh-
old of 0.2 and comment increment size of 10, we were able to
gain the maximum responsiveness over the round-robin sched-
uler. We also like to note here that that, when the number of
new comments for a media session is less than 10, we just take
those 5 available new comments. We think this is because as
the comment increment size goes up to 20 or 30, the burst
of cyberbullying comments can get nullified by the other
positive comments, which in turn influences the features(i.e.
summation of individual comment sentiments) that are used
by our incremental classifier. So 10 comment increment size
tends to be the optimal size for having enough context of a
comment thread to make a knowledgeable decision about cy-
berbullying while also not being too big to risk being nullified
by other positive comments. The figure also confirms that
the confidence threshold of 0.2 offers the best speedup for our
dynamic priority scheduler. For example, if a media session
𝑚 has been classified 3 times at 𝑡1, 𝑡2, 𝑡3 with classification
decisions not-bullying, not-bullying, not-bullying respectively
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Table 2: When to Send Alert

Number of Predicted Cyber-
bullying Comment Sessions
in the History

Precision Recall F-1 Score

≥ 1 0.68 0.71 0.69
≥ 2 0.71 0.71 0.71
≥ 3 0.71 0.71 0.71

with confidence values of 0.85, 0, 85, 0.55, this means even
though it has been classified as not cyberbullying, the con-
fidence values of cyberbullying decision is also increasing
(0.15, 0.15, 0.45) which makes it a potential candidate for a
future cyberbullying session. So we take the average of the
previous classification confidence values of cyberbullying class
(0.25 in this case) and see that the average confidence value
is more than 0.2 and change the priority of this media session
as high and insert it in the dynamic priority scheduler. We
mention that we tried all possible combinations of comment
chunk sizes and confidence thresholds and only present those
combinations that yielded the best results. The right figure in
Figure 4 demonstrates the gain time achieved by our sched-
uler for each media sessions from the Vine dataset labeled as
cyberbullying. This figure further justifies the choice of confi-
dence threshold of 0.2 in our scheduler. These experiments
helped us to not only justify our choice of using DPS but
also helped us to decide upon the crucial design choices of
using confidence threshold of 0.2 and 10 comment increment
size.

4.3 Alert Performance
Since each media session will be passed sporadically to the
classifier by the scheduler, the classifier will generate a se-
quence of cyberbullying detection decisions over time for
each media session. It is therefore worth considering to what
extent we should utilize the history of detection decisions
in generating the alert. The default is to generate an alert
immediately after the classifier decides that the current batch
of 10 comments, in combination with earlier content, consti-
tutes cyberbullying. However, we wish to be sure and avoid
false positives. One option is to decouple the alert from the
classification, and delay the alert until N positive decisions
have been recently seen. This design gives us some flexibility
in trading off responsiveness and precision.

For each media session, we maintain an array storing the
results of each classification result of that session along with
the time of that classification. We use this array to decide
when to raise an alert. In particular, we set a threshold
value, which is the number of times a media session has been
classified as cyberbullying since the last time an alert was
raised for that session, or from the beginning if no alert has
yet been raised. After experimenting with different number of
threshold values(2), we find that by raising an alert only when
we have at least 2 decisions for cyberbullying since the last
time an alert was raised, we achieve the best precision,recall
and F-1 score of of 0.71,0.71 and 0.71 respectively, thus

reducing the number of false alarms. This performance is
a marked improvement over the Static Priority Scheduler
(SPS) described in Section 3.2 that had a recall of only
58%. Moreover, the recall is, in fact, an improvement over
the standard classifier’s 0.66 (See Table 1 for comparison).
This marked improvement of recall over two baselines (SPS
and standard classifier) demonstrates the justification of
using incremental classifier component and dynamic priority
scheduler along all the associated design choices: that these
components are efficient and responsive and also retains
sufficient classifier performance when compared to current
state-of-the-art.

4.4 Scalability Evaluation
In this section, we first demonstrate the way our proposed
system scales when it has to deal with a substantial number
of media sessions. For this purpose, we first deploy Amazon
AWS free tier 1GB memory virtual machine instances to start
monitoring media sessions, implementing both our proposed
scheduler and round robin scheduler. An acceptable respon-
siveness of the system is our primary goal along with the
scalability of the system. In these experiments, we decided
that an average alert time under 2 hours is acceptable, which
means an alert will be within 2 hours of a cyberbullying in-
stance. We acknowledge that this decision is purely because
of the lack of research in this particular area. In future, we
will conduct an elaborate survey to explore the acceptabil-
ity of a potential cyberbullying system’s responsiveness. For
the experiments presented in this section, we replicated the
100000 media sessions’ traffic from the dataset in [23] up to
the scale of 39 million. Those media sessions were gathered by
performing snowball sampling after selecting a random seed.
We believe the randomness of the seed selection, snowball
sampling, and large number (100000) of media sessions in
this dataset should enable the scaled up traffic to reasonably
approximate the behavior of the overall network.

The left graph in Figure 5 shows the number of media ses-
sions that can be processed as the number of AWS instances
is increased, keeping the average alert time under 2 hours.
This figure shows that the number of media sessions that can
be processed increases linearly with the increase in the num-
ber of instances, and that our system scales five times better
than the round robin scheduler. Given that the Vine social
network generated about 39 million media sessions since 2012
[26], our system is capable of monitoring Vine-scale social
networks with only 8 AWS instances, keeping the average
alert time below 2 hours. In contrast, a round-robin scheduler
would require upwards of 40 instances.

The right graph in Figure 5 shows the average alert time
for round robin and dynamic priority scheduler versus the
number of media sessions. It can be seen from the figure
that we are able to process 5 million media sessions with our
proposed system with an average alert time under 2 hours
where as for round robin, it is 1 million. To show the cost of
using our dynamic priority scheduler in terms of worst case
scenario, we see in Figure 6 that around 10 percent of media
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Figure 5: Left: Number of media sessions vs number of instances needed to monitor them, keeping average alert time under 2
hours. Right: Average alert time vs number of media sessions for round-robin and dynamic priority scheduler.
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Figure 6: CCDF of alert time for 5 million media sessions in
1GB memory amazon AWS instance using dynamic priority
scheduler.
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Figure 7: Memory vs number of media sessions in millions.

sessions get their alerts after 2 hours. This is the cost we pay
for postponing the processing of low priority media sessions
in our scheduler.

Next,we investigate the resources our system will need
to monitor a comparatively more popular social network
like Instagram. Since its establishment in 2010, Instagram
has accumulated over 40 billion media sessions [18], which
means almost 6 billion media sessions per year, a number
much larger than Vine’s 39 million [26]. To accommodate

Table 3: Total Time Comparison for Different Approaches and
Different Number of Media Sessions (seconds)

Approach 10000 50000 100000
AdaBoost 5674 26784 -
Logistic Regression 1110 5320 (44X) 10438
Incremental Classifier 22 120 (223X) 206

such a high volume social network, based on Figure 5, we
would need 1,200 AWS instances to keep the average alert
time under 2 hours every year. To scale up for such a load,
we have two choices. We can either spawn off 1,200 such
instances of 1 GB memory or we can increase the memory
of our instances to process more media sessions. To further
investigate the memory performance, we implemented our
system with different memory-sized instances belonging to
Amazon AWS services. Figure 7 shows the number of media
sessions processed by each instance of a particular memory
size. The number of media sessions in the Y axis illustrates
the highest number of media sessions that can be processed
by that instance without having an average alert time of over
two hours. The figure demonstrates that, while increasing
memory does help increase the media session monitoring ca-
pacity, at a certain point around 32 GB/instance, additional
memory no longer enables additional monitoring of media
sessions. That is, the graph plateaus around 50 million media
sessions, so that there is no additional benefit to using 64
GB or 128 GB instances compared to 32 GB instances. We
hypothesize that this behavior is due to computation be-
coming the main bottleneck rather than memory. Therefore,
to monitor Instagram-scale social networks, we would need
approximately 120 32 GB instances. Note that without our
dynamically scheduled incremental classification system, ap-
proximately 600 32 GB instances would be required, almost
five times as many, as it can be seen from Figure 7.

For evaluating the incremental classifier’s scaling perfor-
mance, we compare three types of approaches, namely the
best reported Vine cyberbullying classifier [23] (Standard
AdaBoost), Logistic regression without incremental feature
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Figure 9: CCDF of Time Interval in hours until First Com-
ment For Bullying Media Sessions.

extraction or classification (Standard Logistic regression),
and Logistic regression with incremental feature extraction
and classification (Incremental Classifier). Table 3 shows the
time needed in seconds for these three approaches to process
different numbers of media sessions. The table clearly demon-
strates that the choice of using incremental classifier helped
us to improve classification time by 223 times faster than
AdaBoost for 50,000 media sessions and 44 times faster than
the standard logistic regression. For this evaluation purpose,
we used the Vine dataset provided in [23].

Next, we compare the responsiveness of our dynamic prior-
ity scheduler against the unprioritized round robin scheduler.
The metric we use to compare these two approaches is re-
sponsiveness gain, meaning the ratio of time taken by the
round-robin scheduler over the time taken by our dynamic
priority scheduler to raise an alert. Figure 8 shows the re-
sponsiveness gain vs. number of media sessions. The gain
tends to increase as the number of media sessions goes up,
reaching almost 7 times faster responsiveness for 100, 000
media sessions. This improvement is due to the fact that our
scheduler tends to process cyberbullying media sessions first
whereas round robin processes all media sessions at each pass.
For this reason, as the number of media sessions grows, so
does the improvement of using our dynamic priority scheduler
due to its priority processing of cyberbullying media sessions.
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Figure 10: CCDF of activity for all and bullying media ses-
sions.

For further insights into resource scalability, we present
activity graphs of the media sessions from Vine. We inves-
tigate the distribution of how long a bullying media session
takes to receive its first comment. Figure 9 shows that very
few bullying media sessions receive their first comment after
500 hours since session creation. Hence, one way to improve
scaling is to stop monitoring any session that takes longer
than 500 hours for its first comment. Secondly, Figure 10
shows the CCDF of activity of media sessions in Vine. A fair
percentage of media sessions receive comments even after
10000 hours after initial media posting. In comparison, bully-
ing media sessions received all their comments within 9000
hours, i.e. within a year of their creation. So another way
to improve scaling would be to purge out all media sessions
that are one year old.

5 CONCLUSION AND FUTURE WORK
In this work, we have developed a cyberbullying detection
system for media-based social networks, consisting of a dy-
namic priority scheduler, a novel incremental classifier, and
an initial predictor. The evaluation results show that our sys-
tem substantially improves the scalability of cyberbullying
detection compared to an unprioritized system. Morever, we
demonstrate that our system can fully monitor Vine-scale so-
cial networks for cyberbullying detection for a year using only
eight 1 GB AWS VM instances. We discover the point (32
GB) at which adding memory no longer enables monitoring
of more media sessions, and project that our system would
need 120 32 GB instances to fully monitor Instagram-scale
traffic for cyberbullying.

As part of future work, we propose to investigate the
plateauing effect that limits the effectiveness of adding more
memory, namely that there is likely a computational bot-
tleneck that needs to be further addressed. We also plan
to research on developing a diverse,scalable and responsive
classifier with better precision and recall performances for
Vine as well other diverse OSNs like Facebook.
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