
RescueMe: An Indoor Mobile Augmented-Reality
Evacuation System by Personalized Pedometry

Junho Ahn and Richard Han
Department of Computer Science, University of Colorado, Boulder, Colorado 80309

Email: junho.ahn@colorado.edu

Abstract—Emergency applications have recently become
widely available on modern smartphones. Nearly all of these
commercial applications have focused on providing simple acci-
dent information in outdoor settings. AR in indoor environments
poses unique challenges, due to the unavailability of GPS indoors
and WiFi-based positioning limitations. In this paper, we propose
the use of RescueMe, a novel system based on indoor mobile
AR applications using personalized pedometry and one that
recommends the most optimal, uncrowded exit path to users. We
have developed the RescueMe application for use within large-
scale buildings, with complex paths. We show how RescueMe
leverages the sensors on a smartphone, in conjunction with
emergency information and daily-based user behavior, to deliver
evacuation information in emergency situations.

I. INTRODUCTION

In 2009, the annual losses attributable to fire in non-
residential buildings included 90 civilian lives and 1,500 seri-
ous injuries that occurred in 89,200 buildings, according to the
U.S. FEMA (Federal Emergency Management Agency) [1].
Injury or death from fire within a building can be the result of
asphyxiation caused by the inhalation of smoke, people being
crushed by the walls collapsing, the spread of the fire that
burns them before they can escape, or by crowds of people
trampling each other in an effort to escape. The common factor
is the time it takes for people to evacuate. If they can escape
from the fire within the building in a sufficient amount of time,
they can survive.

Our key motivation is to develop a mobile application that
can help people evacuate quickly from buildings in emergency
situations, such as fire. Our application, RescueMe, is based on
existing built-in sensors on a smart phone and cloud servers via
mobile social networking infrastructure. Our application helps
users evacuate from dangerous places as quickly as possible,
without the use of any additional installed infrastructure in
the building. It also provides information about crowded areas
(hallways, exit doors) within a building, so that users can be
diverted from these areas to the fastest exits. Some existing
emergency systems such as RFID or Wi-Fi help to locate users
to provide a simple shortest path for evacuation. However,
such systems provide no Augmented Reality (AR) guidance
and require installing a costly infrastructure of hundreds if
not thousands of devices. Our application leverages existing
smartphones and cloud servers to provide information for
locating users and identifying optimal evacuation paths.

A prototype of RescueMe is shown in Figure 1. As the user
walks up and down the hallway, the AR tags indicates the
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Fig. 1. A screenshot of the mobile front-end component of the RescueMe
mobile augmented reality system. The mobile component is running on an
Android smart phone.

exit path and the remaining distance. For example, suppose
a person is visiting a hotel or unfamiliar office building,
and the fire alarm sounds. A user would turn on RescueMe
and follow the Augmented Reality indicator arrows to safety.
RescueMe localizes the individual by taking image snapshots
of landmarks, and matching them with well-known locations,
using a service such as IQEngine. A user could take a photo
of the room number or name on the hotel or office door that
they’re standing next to, which would localize them. After that,
RescueMe would recommend the best individualized exit path
with the shortest exit time for the user by using AR on the
user’s smart phone. While the user is following that path, if
the server recognizes that the evacuating path is very crowded
through other users’ walking speeds, it notifies the user of a
new evacuation path to take.

The contributions of this paper are as follows: an
infrastructure-less emergency evacuation system that works
indoors using image-based localization; a mobile guidance
system using AR on smartphones to direct users to safety; a
personalized pedometry system that estimates individual stride
length to more accurately determine how far a user has walked;
and a recommendation algorithm for the shortest delay path
that reroutes users around crowded exits to uncrowded exits.

II. RELATED WORK

RFID tags are explored [11] as a means for non-GPS local-
ization. RFID tags, statically placed in a building beforehand
with precise location knowledge can be used as navigational
waypoints. The requirement to install such an infrastructure



within the environment is a major limitation of this approach.
For the mobile phone localization, received signal strength
(RSS) of Wi-Fi signals is the current preferred method [8],
[4], [5]. Methods used are multilateration and fingerprinting.
Multi-lateration requires at least 3 access points and precise
knowledge of their locations to triangulate a user’s location
through RSS measurements. Fingerprinting requires the user
to map the Wi-Fi signal propagation characteristics of the
environment beforehand, creating a probabilistic heat map
that may be consulted to compare RSS readings obtained
by the user. All of the proposed techniques require a prior
knowledge about the environment and so their application is
less generalized.

Pedometer dead-reckoning (PDR) techniques provide a
more general solution by not requiring any prior modification
or knowledge of the navigational environment. Given a known
starting location (such as that provided by GPS at the entry
point to a building), users can probabilistically determine
their navigational pathway through footstep detection and
heading estimation. Such techniques are limited to the sensor
placement and the sensor quality. The most accurate results
require external sensor placement in the users shoes [8], [13],
[3], e.g. yielding 0.5 m - 0.75 m accuracies in 8725 m2
of 3-story building space [13]. Using only the mobile smart
phone device offers a more generalized solution, but suffers
from limited sensor accessing, poor MEMs sensor quality,
and looser coupling between the user’s movement and the
sensing capability. CompAcc [6] can also localize a mobile
user by using a map-matching technique along with GPS, an
accelerometer, and compass–but only in outdoor areas. This
author’s method cannot be used to localize a user within
a building initially, because it requires a GPS connection
to initially localize the user. Even if the user was initially
localized within the building, this author’s method could not
be used, because it requires the periodic use of GPS to correct
for localizing error. Stride estimation is done statically before-
hand, contributing to the errors, depending on the variability of
a user’s gait. Dynamic stride estimation has been explored, but
sensors are normally mounted on the foot in order to capture
leg swing. Work to compensate for these errors employ the
Kalman filter [8], [12], [11], Weinberg expression [10], or
zero-velocity updates (ZUPT) [8], [3]. These three techniques
minimize inertial drift and can predict actions based on prior
event knowledge. In particular, the Kalman filter has shown
wide usage, and the ZUPT has shown excellent correction
accuracies.

III. SYSTEM DESIGN AND ARCHITECTURE

In this work, our goal is to design and develop an indoor
augmented reality system for evacuation, by leveraging the
sensing capabilities of smartphones and user behavior. In this
section, we first highlight the system design requirements and
challenges, then describe the overall system architecture and
key components.
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Fig. 2. Cloud based RescueMe architecture.

A. System Design Requirements and Assumptions

Supporting indoor augmented reality for evacuation calls for
advances in a number of research areas, including accurate and
efficient indoor localization, efficient indoor AR rendering and
user-friendly interfacing, and effective evacuation functionali-
ties.

Indoor localization is a key design requirement for in-
door AR systems. Due to the diversity and dynamics of
indoor environments and user activities, we need to identify
a user’s indoor location precisely (with fine granularity and
robustness), with low latency, and without incurring too much
overhead on the mobile device.

Efficient exit path recommendation is also important for
evacuating a dangerous place in the building. The system needs
to effectively recommend the best exit path, avoiding crowded
places.

Our solution should not make unrealistic assumptions about
the existence of extensive infrastructure to assist with any of
the above tasks. Our system does not assume the existence of
elaborate indoor localization systems. Even WiFi connectivity
and WiFi localization are not necessary, so long as there exists
an external wireless connection, such as 3G/4G. We assume
only the capabilities and sensors common to most standard
smartphones, e.g. today’s iPhones and Android phones, that
commonly have a camera capable of capturing continuous
video, and accelerometers capable of measuring motion. We
assume that the digital compass works indoors, which we’ve
verified to be normally true in typical building settings. We
do not assume the existence of gyroscopes on the phone,
since not all smartphones support them. We also assume that
RescueMe already has the map image of their building, the
geographical orientation and actual size of their building, room
doors’ location with the room number and the walking paths,
marked on the map. RescueMe supports evacuation services
in all buildings without any additional cost, if the information
is provided.

Our task is then to show how, under these assumed con-
ditions, we can construct a system that successfully supports
mobile augmented reality in typical indoor settings.

B. System Architecture

The architecture of RescueMe shown in Figure 2 consists
of three logical components:

1) Mobile component: This component runs on the user’s
smartphone. This component implements four important
functions. First, it provides inputs for image-based posi-
tioning by transmitting appropriate snapshots of nearby



room number. Second, it implements a pedometry-based
localization algorithm to accurately determine the cur-
rent position and orientation of the user as the user walks
up and down the hallway. Third, it implements 3-D
rendering of the building from the current perspective
(location, orientation, etc.) using AR tags. Finally, it
records user’s walking patterns such as walking impact
and a stride length in an outdoor area to predict user’s
walking distance in the building.

2) External Image labeling Service: RescueMe uses an ex-
ternal image labeling service to identify a room number
from a room number snapshot taken by the mobile
component. This service may use any of the well known
techniques, such as computer vision and crowd sourcing,
for label identification. In our current prototype, we use
a commercial image labeling Web service called IQ
Engines [2].

3) RescueMe Server: This component implements our rec-
ommendation algorithm for the best exit path for each
user. RescueMe selects the path with the shortest time
to evacuate. This is not always the shortest distance
path. For example, if the shortest distance path is too
crowded, RescueMe observes the delays of other users in
the system, and finds another path that is faster, rerouting
and notifying each affected user in real time.

IV. SYSTEM COMPONENTS

In this section, we describe the design and implementation
of each component of the RescueMe system. The RescueMe
Server coordinates all interactions among the system compo-
nents, and is responsible for maintaining a spatial database
that contains the building’s map and metadata that will be
rendered by the AR component on the mobile client. The
RescueMe Server is implemented as a Web server that exposes
its functionality externally.

A. Pedometry-based Localization

A pedometry-based dead-reckoning (PDR) system for in-
door localization has been implemented in the Java language
for an Android Nexus One smart phone, running on the
Android 2.3 (Froyo) operating system. The NexusOne smart
phone employs two tri-axis motion sensors, which we leverage
for PDR localization: an accelerometer and a digital compass.
The accelerometer we use for both step detection and stride
estimation. The digital compass is used to determine the
user’s heading-direction from which the direction of motion
is estimated.

1) Footstep Detection: To detect a step, we follow a mul-
tistep signal processing method. First, the x-axis, y-axis, and
z-axis accelerometer values are normalized by removing the
effect of gravity through a mean removal operation. Secondly,
we calculate a moving average of the normalized accelerom-
eter signal. A moving average serves to both minimize errors
induced by varying the user orientation of the phone in 3-axes,
as well as remove unwanted high frequencies from the data.
Thirdly, we examine both positive and negative peaks in the

processed accelerometer signal trace. A genuine footstep will
generate both a bound and a rebound phase corresponding to
the foot striking and pushing against the ground. A footstep
is therefore characterized by a positive peak closely followed
by a negative peak in the accelerometer data. If the amplitude
difference between a positive and a negative peak is greater
than a set threshold, a step is recorded. Because footstep
frequency is roughly 2-3 Hz, we require the temporal distance
between a positive and successive negative peak to be ≤ 300
ms. Peak amplitude difference is required to exceed a threshold
of 1.0 g. Both values were experimentally determined and
verified as well-performing choices. The addition of a dynamic
threshold adaptation scheme was tested and found to perform
worse than the static scheme, which we possibly attest to the
low maximum android accelerometer sample rate, and so the
static threshold method is reported.

2) Learned Gait Pattern Between Outdoor Places: Res-
cueMe measures a daily-based stride length for the user, when
he is walking in outdoor locations in normal situations, in
order to build a personalized stride length which is used in the
RescueMe application. For this measurement, the application
needs to recognize when the user is walking down a street,
hovering around one area, or remaining in the same place.
We found a study which determined that people usually visit
the same locations at similar times. The study which inves-
tigated the areas visited by 100,000 subjects found that they
exhibit habitual space-time movements, with reasonably small
variation [14]. We used this finding about human behavior,
based on similar space-time patterns to predict the location
of users. Based on the study, we stored the regularly visited
places on the phone. When the user stays at the same place
or hovers around the place for a certain length of time, we do
not measure the user’s stride length. However, when the user
walks between outdoor places located a certain distance from
each other, RescueMe measures the gait pattern of the user by
using the accelerometer and GPS. The walking patterns are
adjusted according to a user’s age, sex, height, weight, health,
etc [15], [16], [17]. These characteristics of a user affect the
amplitude of the accelerometer. RescueMe estimates a stride
length of users by using the adjusted amplitude measurement
of the accelerometer. This outdoor measurement increases the
accuracy of our estimation of the user’s walking distance
within the hallway of a large-scale building, without requiring
the use of GPS indoors.

3) Daily-based Personalized Stride Estimation: Our system
provides a distance estimation between each detected footstep.
In order to estimate stride lengths, we have developed a stride
estimation function that is based upon the historical measure-
ments of the impact of a user’s footstep, which corresponds
to the detected amplitude measured between the positive and
negative peak in an accelerometer signal trace.

To further refine our stride estimation function, we however
need to first correct for a periodic measurement error found in
the calculation for the length of a footstep. We examined the
x-axis, y-axis, and z-axis of the accelerometer that measures
the number of footsteps. We found that the orientation of the



phone is strongly related to the measurements of the three axes,
and that one of the axes will best determine the actual number
of footsteps we are measuring in our algorithm. To determine
the correct number, we take the maximum measurement of the
three axes. The equation for measuring footsteps is shown in
Equation 1. Actually, we calculated the sum of the footsteps
by running the equation periodically, every few seconds, to
collect an adequate number of footsteps from the user and
to capture the variable footstep measurements based on the
orientation of the phone.

Footsteps = Max(Footstepsx, Footstepsy, Footstepsz) (1)

We also measured the walking impact of the user’s footsteps
as he walks from one outdoor location to the next. The impact
strength is calculated by measuring the amplitude between
the positive peak point and the negative peak point on an
accelerometer. We calculated the average impact of the user’s
footsteps from the data from the three axes, regardless of the
orientation of the phone, by using the following Equation 2.

Strength(t) = Avg(Length(HighPeakx,LowPeakx,t),

Length(HighPeaky,LowPeaky,t),

Length(HighPeakz,LowPeakz,t)) (2)

We calculated the user’s stride, using the number of footsteps
and the total walking distance taken during one measurement
time period. The walking distance is computed between two
locations from GPS connections. We divide the walking dis-
tance by the number of footsteps to measure the user’s stride
as in Equation 3. We pair this stride measurement with the
user’s corresponding walking impact measurement to predict
a user’s normal stride (e.g., whether walking, running, slow,
fast, etc.).

Stride(t) = WalkingDistance(GPS1t−1,GPSt)

/ footsteps(t−1,t) (3)

4) Map-Matching-Based Orientation and User’s Direction
Estimation: Upon successful detection of a user’s footstep, the
simultaneously polled digital compass sensor data is examined
in order to determine the direction a user is heading based upon
the footstep detected. For each footstep we read the angle of
the compass on the building map to locate the user. The true
angle direction the user is heading is not measured correctly
by the mobile phone as he walks, because the orientation
of the phone varies as it is shaken by the user, holding it
in his hand. For example, if the angle direction the user is
walking is 90 degrees, the phone normally detects the angle’s
measurement within a range between 60 and 110. If we use
the raw angle data read from the phone, the walking path’s
measurement data will vary from the user’s true path. The
map-matching technique reduces this problem. This technique
is also used to detect the hallway turning points on the
building map. When a user turns left or right, RescueMe
changes the angle of the compass to the angle of the map. To
recognize the turning points, we created a buffer with limited
window size to save previous measured angles stored on the

phone as the user walks. If the measurements of more than
half of the angles are different from the user’s previously
determined direction, we store the user’s current direction
as this new angle measurement. Part of the map-matching
algorithm rounds phone angle measurements that are close
to the actual map angle measurements to the map numbers
observed in the buffer. Also, if a new angle measurement
is not a possible angle measurement of the map, or if it is
not within a plausible range of acceptable map measurements,
RescueMe does not change the current angle’s measurement to
the new one. We discuss the actual experiment for developing
this estimation algorithm in the Experimental Results section.

5) Solution for incremental measurement problem: Res-
cueMe provides two methods for solving an incremental
problem generated when using pedometry. Pedometric mea-
surements are generated by the accelerometer of the phone.
The accelerometer scans for noise, caused by the shaking or
jiggling of the phone as the user walks. Such noise affects
the measurements used to calculate the walking distance of
the user. The longer the walking time, the more the error
may increase. We use two different methods to correct for
such errors: map-matching combined with user’s direction-
path change, and manual re-selection of a room number or re-
taking a picture of a room number. With the first method, the
RescueMe client recognizes the user’s location when the user
changes the angle path he is walking. RescueMe compares this
change in location with the building map, and if it matches,
resets the user’s previously recorded location to this new
correct one–the actual hallway turning point on the map. In
the second method, the user decides to reset his own location
manually by selecting a room number close to where he is
standing. Using this method, he can reset his current location
by either re-taking a picture of the room number now closest
to him, or by selecting from a list of room numbers already
stored on the server. In the second instance, the user selects
from a list of room numbers on his current floor that were
sent to him originally by RescueMe when he first accessed
the server.

B. Evacuation path recommendation

The RescueMe application provides a recommended exit
path to a user, based on the shortest path [7] from the
user to the exit location. For example, the user requests an
evacuation path, using his smartphone, when he finds himself
in a dangerous place or situation in a building. The user
takes a picture of the room number nearest to him, and the
phone client then sends the server this information. The server
calculates exit times for possible exit locations, based on the
walking speed of the user and the distance between the user
and the exit doors. The formula for the exit time calculation is
shown below in equation 4. After comparing the various exit
times, the server sends back an exit path with the lowest time
to the user’s phone. That path will be the shortest possible
path the user could take to exit the building.

ExitT ime = WalkingDistance/WalkingSpeed (4)



The RescueMe application helps users to avoid crowded
hallways in a building. For example, when there is a crowd of
people around an exit door, trying to evacuate quickly, most
of them will not be able to exit in a timely and safe manner. If
the user begins to approach such an exit location, based upon
RescueMe’s original recommendation of the shortest path, the
user’s walking speed will slow down significantly. Once the
application detects the user’s reduction in walking speed, it
will do two things. The RescueMe application will recalculate
the next shortest exit path for the user, and then it will share
this information with other users via the RescueMe server.
Thus, we have enhanced the previous formula to accommodate
this situation. The application measures the delay time of the
crowd trying to exit by the door. This newly calculated exit
time uses the original exit time from the starting point to the
crowd point (the location at which the user’s speed is reduced)
plus the delay time, as shown in the formula 5 below.

ExitT ime = WalkingDistanceStart,CrowdPoint

/ WalkingSpeed + DelayT ime (5)

The application estimates a delay time for the user that is cal-
culated using the detected reduced speed and the distance from
the crowd point to the recommended exit door. Specifically,
this delay time is calculated by dividing an “exiting” distance
from the crowd point (the user’s location) by the reduced speed
as in equation 6.

DelayT ime = WalkingDistanceCrowdPoint,Exit

/ ReducedWalkingSpeed (6)

C. Augmented Reality

We have implemented AR on the smart phone to support
the overlaying of path-based tags on the hallway. The tags not
only give a 3D depth perspective, but are also 3D themselves
and can be rotated to face the user regardless of the viewing
angle. We accomplish this by exploiting the OpenGL library
as explained below. The application differently renders the 3D
information depending on the behavior of users. We describe
how to render a view of the textured 3D model using the
OpenGL library.

1) 3D navigation: Our AR emergency application provides
the user with information about the path to take to evacuate
a building, using a 3D presentation of evacuation tags for
viable exit paths as in Figure 1(a). The tags are displayed
in succession on a recommended exit path within a hallway,
thus indicating the direction and distance the user needs to
follow. We use a depth-based presentation of arrow tags to help
users easily recognize the distances they must walk to follow
the designated exit paths. When looking down the hallway, a
user will know the walking distance he needs to go, because
the application displays multiple arrow tags in succession up
to the point in the hallway in which the user needs to turn
or exit. Meanwhile, as the user walks down the hallway, the
application displays a different tag in a corner of the phone that
includes directional symbols, conveying information on which
way to turn, along with text showing the remaining walking

distance. Thus, the user can identify whether he is following
the correct direction while he is walking. The directional arrow
tags and the additional symbol/distance tag will enable the user
to find a viable exit path and proceed in the right direction on
that path until he gets to the exit door.

2) 2D Map: The RescueMe application also provides a 2D
map, which users can access when they press a button, so that
they can see their current location within the building and all
of the recommended exit paths on this map as in Figure 1(b).
Thus users can know where they are headed and where they
are located in the building, while walking. This 2D map, which
was implemented with this application, is based on OpenGL.
The users can use this map anytime and even evacuate the
building by using it. Users can also change the size or the
position of the map by manipulating the touch screen on the
smart phone. When walking in a building that has intricate or
complicated paths, users can see their current location and a
portion of the map at any time.

D. Image-based Positioning

RescueMe requires accurate determination of the user’s
location in an indoor environment. The Global Position-
ing System (GPS) cannot be used in indoor environments,
since line-of-sight communication between GPS receivers and
satellites is not possible in an indoor environment. Radio
frequency (RF) positioning systems that use WiFi and Blue-
tooth radios on smartphones provide limited accuracy (1 -
3 m) due to the complexities associated with indoor envi-
ronments, including a variety of obstacles (people, furniture,
equipment, etc.) and sources of interference and noise from
other devices [9].Therefore, we investigated the use of other
positioning technology in RescueMe. RescueMe uses a com-
mercial image labeling Web service, called IQ Engines [2], to
determine the user’s initial starting position whenever the user
takes a picture of a room number close to him. IQ Engines
uses a combination of computer vision and crowdsourcing to
tag a photo with a label describing the content of the image.
When an image is submitted to IQ Engines, the image is
first processed by a computer vision system in an effort to
provide an accurate label. If the computer vision system cannot
identify the image, then IQ Engines passes the image to its
crowdsourcing network for analysis and tagging. According to
IQ Engines, the time to return a label for an image varies from
a few seconds for the computer vision system, to a few minutes
for the crowdsourcing system. In the RescueMe application,
a user’s location is determined in the following way. First the
user takes a picture of a room number above a door to provide
the RescueMe server with his location. The picture is sent
to the IQEngines server, which then identifies all text within
the picture. The IQEngines server sends back the text of the
room number to the RescueMe client, the user’s phone. If the
server finds the exact same number in its database, it sends the
room number, location, and other associated metadata for that
room back to the user. In the RescueMe application, buildings’
door locations are expressed using the following dimensions:
floor level, and x-axis and y-axis positions of the doors in
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the building. If the text that is returned to the phone client
contains errors, such as the omission of a letter, the addition
of an incorrect letter, or the substitution of a correct letter
with an incorrect one, the RescueMe client will use an edit
distance algorithm [18] to determine the correct room number.
The client then queries the user to see if the room number
is correct. When the user gives an affirmative answer, this
information is sent to the RescueMe server, and the correct
room number, and thus the location of the user, is determined.

V. EXPERIMENTAL RESULTS

A. Training Personalized Pedometry

TABLE I
COUNTING FOOTSTEPS DEPENDING ON THE ORIENTATION

Orientation footsteps x-axis y-axis z-axis maximum steps
A 470 380 192 460 z-axis
B 472 464 252 452 x-axis
C 468 72 332 461 z-axis
D 476 160 452 380 y-axis
E 452 416 432 232 y-axis
F 460 456 412 372 x-axis

1) Historical pedometry measurement: We conducted an
experiment for correctly counting footsteps, depending on
the orientation of the phone using Equation 1, in order to
use this information in the user’s personalized stride length
measurement. We collected this data by measuring the impact
of each footstep of the user, while he was walking to different
locations in outdoor areas, using GPS and an accelerometer.
The average stride length was calculated by using the number
of footsteps as in Equation 3. The phone was carried in a
pocket or in a bag, and positioned in different orientations
as in Figure 3. We measured the number of footsteps by
using the three axes of the accelerometer as in Table I.
In the case A and case C, the z-axis of the accelerometer
strongly affects the detection of the number of footsteps. The
x-axis strongly affects the detection in cases B and F, while
the y-axis strongly affects the detection in cases D and E.
Through this experiment, we evaluated the accuracy of the
proposed algorithm as to whether it was detecting the number
of footsteps correctly, regardless of the orientation of the
phone.

2) GPS duty-cycling experiment for personalized pedom-
etry: The user’s personalized stride length is continually
measured only when the user is in outdoor areas, by using
GPS whenever the user is walking from one outdoor area
to another. The GPS sensor obtains a user’s location from
satellites, but the antenna for GPS on the phone is not robust
enough to connect instantly to a satellite, with one try. Thus,

we conducted an experiment to determine the maximum delay
time for the phone’s GPS connection in various situations. In
the delay experiment, the average delay time for connecting
was about 7.1 seconds and the standard deviation was about
5.9 seconds. The maximum delay time was recorded to be 15
seconds in this experiment. We also performed a test of setting
the duty-cycle time for accessing GPS to every 5 minutes and
found that the application consumed less than 15 percent of
the battery power in 10 hours time on the Nexus One.

B. Personalized Pedometry-based Localization

Personalized.Trial3

Personalized.Trial2

Personalized.Trial1

Stat.TrialAvg

(a) Overall distance walked.

Personalized.Trial3

Personalized.Trial2

Personalized.Trial1

Stat.TrialAvg

(b) Stride length estimation.

Fig. 4. Personalized and static-based estimation methods are compared for
individual stride and overall distance. Overall distance includes both step
detection and stride estimation errors.

TABLE II
STEP DETECTION ACCURACY

Stride Length Measured Steps Actual Steps Error (%)
Short 1 28 30 -6.67
Short 2 29 30 -3.33
Short 3 28 30 -6.67

Regular 1 30 30 0.00
Regular 2 30 30 0.00
Regular 3 29 30 -3.33

Long 1 31 30 3.33
Long 2 30 30 0.00
Long 3 32 30 6.67
|Avg.| 3.33

Std. Dev. 4.41

1) Accuracy using Personalized Pedometry: The pedestrian
localization via pedometer and heading estimation systems
were implemented and tested in Java on a Nexus One smart
phone running the Android 2.3 (Froyo) operating system. User
tests to evaluate pedometry step detection, stride estimation,
and the combination of step detection and personalized stride
length measurements into an overall distance walked estima-
tion were carried out. Additionally, differing types of users
were simulated, varying from an “engaged” user who wishes
to learn how to use the system to obtain the best performance,
to the “casual” user who is not interested in performance and
so uses the system in a careless manner.

To evaluate pedometry system step, stride, and distance
accuracy, a user was tasked to walk three trials of 30 paces
in testing each of three different types of user strides. The
first stride type is a “short stride,” which is a deliberately
short stride of about 50-55 cm. The second stride type is a
“medium stride,” which is a comfortable stride length of about
65-70 cm, which is natural for most users. Lastly, the “long
stride” is one that is the largest the user can manage without
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Fig. 5. Experiment for Orientation and Heading Estimation

jogging or running; a length of about 95-100 cm. The results
of these nine trials can collectively be seen through Table II
and Figures 4(b) and Figure 4(a). Table II shows our system
to have an overall step detection error rate of 3.33 percent. In
fact, for longer tests that we omit here, step detection accuracy
was shown to improve with the number of strides taken.

In Table II, short strides have a tendency for under detection,
while long strides are prone for over detection. This is due
to the static threshold used for detection, which is tuned for
the normal stride length scenario. An adaptive step threshold
detection scheme was implemented and tested, but suffered
a poorer performance than the static method. We theorize
this counterintuitive result to be due to the accelerometer’s 10
Hz maximum sampling rate on the Nexus One smart phone
not providing a smooth enough data curve for the adaptive
algorithm to leverage effectively.

Figure 4(b) compares the static and personalized stride
length estimation techniques. The resulting stride lengths
represent the average stride length of each of the 9 user
trials completed, calculated by the overall distance measured
divided by number of steps detected, but not actually taken.
This removes any additional step detection errors that might
be present and allows a pure comparison of stride length
estimation. The personalized stride estimation generated 2.33
percent error, while the static stride estimation suffers 17.06
percent error. Interestingly, because the static method was
tuned for the medium stride length, its average error actually
outperforms that of the personalized method on the same data
set. A point of note is the extreme accuracy of the long stride
under the personalized estimation scheme. The error bars are
almost too small to be seen, averaging to 99.6 percent stride
length accuracy for this stride type. This excellent accuracy is
most likely due to the flatness of the alpha correction function
for large positive peak amplitudes.

Figure 4(a) addresses the combination of error from step
detection as well as stride estimation techniques. An overall
walk distance is measured by our system and is compared
against the ground truth walked distances. Figure 4(b) shows
that in some cases, e.g. personalized trial 1 for a short stride, an
error in step works to reduce the error stride. However, in most
cases, if both kinds of error are present they combine with one
another, which is evident by the increase in overall error from
stride (2.33 percent) and step (3.33 percent) to distance walked
(3.43 percent).
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Exit door

Exit door

Exit door
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Fig. 6. Simulation for RescueMe

2) Map-matching experiment for RescueMe: RescueMe
uses a map-matching technique to locate users by using
pedometry. If the hand holding the phone is shaking, the
orientation sensor on the phone reads an erratically changing
angle, so that the direction of the walking path drifts from
the correct path. We performed an experiment for recognizing
a user’s walking path direction, using a map-matching tech-
nique combined with personalized stride length measurement.
Figure 5(a) shows that the walking path drifted a considerable
distance from the actual path, without the use of the map-
matching technique. When the map-matching technique with
the personalized stride length measurements was applied,
RescueMe fixed the drifting walking path to the correct one,
i.e. the corrected path produced by map-matching exhibited
right angles correctly corresponding to the hallways corridors
where we walked, as shown in this diagram.

We also conducted an experiment for predicting the walking
path angle, when a user changes his direction. In this experi-
ment, we created a constantly replenished five window buffer
to determine the heading-direction angle, by storing the angle
measurement in each window for each step the user takes.
Each time three of the five measurements are similar to each
other within the buffer, RescueMe stored the current direction
as the new angle measurement of the heading direction of the
user as shown in Figure 5(b). The combined use of these two
algorithms successfully utilized a match-mapping technique
with pedometry to localize the user on the map.

C. RescueMe simulation for the exit path recommendation

TABLE III
SIMULATION: RANDOMLY DISTRIBUTED PEOPLE

Simulation Random Shortest Path RescueMe
Simulation 1: time (tick) 947 240 240
Simulation 2: time (tick) 673 563 368

We conducted two types of simulations to evaluate the
length of time it takes for people to evacuate an emergency
situation in a building. We contrasted three scenarios–one
with randomization (no algorithm), one using the shortest-exit
path algorithm, and the third, using the RescueMe algorithm.
The first simulation involved 179 people who were deployed
randomly within the building at the start of the simulation.
For the second simulation, 162 people were deployed in
one specific area of the building. The simulated people were



programmed to move one step every tick at the same speed,
as they moved towards the various exit door choices. If more
than one person arrives at the same place, the exit speed of
each person is delayed by the others adjacent to them.

In the first simulation for evacuating the building, we
initially investigated the case where people were distributed
randomly. Figure 6(a) shows that 179 people were randomly
deployed in the hallways of the building. We then measured
the evacuation time of these people, using three different
scenarios. First, the simulated people were randomly evacuated
to an exit door of ”their choice.” Second, the people were
evacuated to the shortest-path exit door. Third, the RescueMe
application evacuated the randomly distributed people to exit
doors that were calculated to take the shortest amount of time.
Simulation 2 in Table III shows the total evacuation time for all
the people for each scenario. These findings show that in the
first case, the random-choice (non-algorithm) method resulted
in it taking 947 ticks for all the people to exit the building.
However, it took 240 ticks for all the people to evacuate in both
the second and third scenarios. Thus, both algorithmic methods
worked equally better than the first method. For people evenly
or uniformly dispersed throughout a building, knowing the
shortest path or shortest amount of time (RescueMe) to an
exit door is best.

The second simulation was conducted to show how best to
improve the exit time when people are unevenly distributed
throughout a building, such as when they are gathered as
a crowd for a presentation in one location in a building.
Simulation 2 in Table III shows that RescueMe provides the
best result for evacuating a crowd of people from within a
building. All of the people could evacuate the building within
368 ticks using this method, whereas the shortest path method
took longer (563 ticks), and the random method even longer.
People using the shortest path method often ended up at the
same exit door, since it was the shortest path from the shared
crowded area. Each individual person’s exit time was delayed
by the people between them and the exit door. However, for
the people in the RescueMe scenario, most of them were
able to exit a door uncrowded by other people, as shown in
Figure 6(b). In this case, as shown in the diagram, RescueMe
recommended one of three exit doors: A, B, and C; thus
the group of people were dispersed equally to allow them to
evacuate quicker through a less crowded exit door.

VI. CONCLUSIONS

This paper has presented RescueMe, a novel system that
uses pedometry and indoor mobile augmented reality, to
recommend the best exit path with the shortest time to
users needing to evacuate a building in emergency situations.
Through an evaluation of this application, we have shown how
our system leverages the sensors on a smartphone, in conjunc-
tion with personalized daily walking stride length estimation
and emergency information, to support a timely evacuation.
Our practical pedometry algorithm with personalized stride
estimation provides high positioning accuracy.
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