
Towards Physically Rendered Environments

Veljko Krunic, Richard Han

Department of Computer Science
University of Colorado at Boulder

Technical Report CU-CS-1033-07

September 5, 2007



Towards Physically Rendered Environments

Veljko Krunic, Richard Han
University of Colorado, Boulder

krunic@ieee.org, Richard.Han@colorado.edu

Abstract

We present an early vision of a system that allows com-
puter controlled rendering of physical surfaces, terrains,
and environments by manipulating grids of “physical pix-
els” or rods whose heights can be raised and lowered on
command. A user would be free to walk within such a
dynamically deformable physically rendered environment
(PRE). The system would be able to create on demand the
floor, ceiling and sides of the “Holodeck” in which the per-
son resides, and vary the slipperiness of the surfaces to
provide authentic tactile feedback in real time. Ideally, the
system would support discreet relocation while a person
walked to create the impression of infinite distance. Such
a system could be combined with immersive graphic visual-
ization and futuristic programmable matter to convey real-
istic impressions of a walking tour of a remote site, the expe-
rience of climbing a steep mountain, or navigation through
a maze. The potential applications of this system range from
entertainment to police and infantry training to education,
and extend as far as the imagination allows. We propose
mechanisms with which we believe that such a vision could
be implemented with the technology of today. This paper is
an early work intended to raise interest in this idea, as op-
posed to presenting a finished solution for achieving the vi-
sion of a Holodeck.

1. Introduction

The “Holodeck” of StarTrek fame presented the vision
of a room in which an immersive virtual world is created
around a user by a computer, which is capable of creating
arbitrary objects and terrain of high realism in real time.
In addition, the user was free to move through such an en-
vironment, and objects could be materialized seemingly out
of thin air. While this complete vision is still science fiction,
this paper offers a pathway towards achieving a Holodeck
by describing how the technology of today can be used to
generate physically rendered environments (PREs) of emu-

Figure 1. PinPoint toy with the impression of
a human hand rendered in the physical pixel
rods.

lated three-dimensional terrains with geometric and tactile
realism.

Figure 1 shows a PinPoint toy that consists of a set of
needles that are free to move in the up/down direction. If a
user presses their hand on the bottom of the needles, the
needles would raise in the approximate 3D shape of the
hand, as shown in the figure.

By augmenting this rod-based motion with computer
controlled actuation of the rods in real time, dynamic sur-
faces, terrains, and even forms of motion, e.g. waves, would
be capable of being rendered, as shown in Figure 2. Over the
size of a room, deformation of the ground, walls, and ceiling
would simultaneously create entire 3D environments within
which a user could stand and move. The realism would be
further enhanced by equipping the tip of each rod with a
surface, such as a ball bearing, disc or ring, whose coeffi-
cient of friction could be varied. This would provide tactile
feedback that approximates the slipperiness of actual physi-
cal surfaces. Combining the PRE with complementary tech-

1



Figure 2. A physically rendered environment
(PRE) or Holodeck consisting of a grid of
computer-controlled physical rods or pixels
whose displacements can be raised and low-
ered.

nology such as virtual or augmented reality, e.g. immersive
graphics visualization via projection and/or head-mounted
helmet displays [7], would be an active area for further ex-
ploration.

A user would be able to stand within this computer con-
trolled physically rendered environment, indeed even on
top of the rods themselves. A user would be able to grasp
onto protrusions in the walls and lift themselves just as in
a climbing wall, except this wall would be programmable,
e.g. any part of a famous climb could be rendered on de-
mand in one’s living room.

To enhance the interactivity of the PRE, our goal is to
convey the effect of infinite distance via subtle displace-
ments that re-center a user while they’re walking or climb-
ing. Achieving such an effect would be one of our main
challenges. Offering such a capability would allow a user
to conduct arbitrarily long hikes, tours, or climbs. Our in-
tent is to offer such a translation effect in two ways. First,
the surface would be translated by raising and lowering the
rods in the appropriate sequence to shift the surface back to-
wards the center of the PRE, while preserving the shape of
the surface during the shift. The user standing on or climb-
ing this surface would be translated along with the surface
by the up/down actions of many rods. The effect would also
be adaptive, i.e. translation would stop as soon as the sur-
face and user are shifted enough to be re-centered. Second,
the coefficient of friction on the rods would be varied in con-
cert with the raising and lowering of rods to ease the job of
sliding the user back towards their original position. For ex-
ample, a user standing on an incline could be re-centered by
having the surface friction of rods underneath the user sub-
tly change to slippery, so that the user’s own weight would
slide them down until they hit a rougher surface stopping the

Figure 3. Each physical pixel consists of a
rod whose height can be raised and lowered.
The tip of each rod provides a mechanism for
controlling the coefficient of friction, in this
case a ball whose rotation can be adjusted or
braked.

slide. The same two approaches would be used to translate
other objects in a PRE, not just the human user. These tech-
niques could be combined with treadmill-based approaches.

Let’s take a closer look at a single physical pixel or rod,
as in Figure 3. On top of the rod is either a ball or a sur-
face whose coefficient of friction can be varied. In the case
of a ball, its ability to rotate and/or rate of rotation would
be adjustable, e.g. by braking, to give varying degrees of re-
sistance. When both the height of each rod and the spin of
each rods ball are computer controlled, we would control
not only the shape of the terrain, but also the slipperiness of
the surface under the users feet. This would allow simula-
tion of an icy cave, or a rough climbing surface.

To summarize, the PRE that we envision would be capa-
ble of at least the following features:

• computer-controlled rendering of arbitrary physi-
cal surfaces on a grid of physical pixel rods

• in real time

• with realistic tactile feedback

• and realistic visual rendering

• able to support the weight of a standing, walking, or
climbing person

• giving the impression of infinite distance

This white paper is early work that is intended to raise
interest in the vision of computer controllable deformable
terrains. Many questions about practical implementation of
this vision, its limitations, price and practical applicability
still remain open. However, we believe that a prototype of

2



this vision is achievable with the technology available to-
day, both on the software and hardware side.

Our paper is organized as follows. Section 2 elaborates
on motivating applications for this work. Section 3 presents
related work, and Section 4 describes the architecture of the
system. Section 5 discusses software control of the PRE,
and Section 6 discusses how physical implementation of
this system could be achieved. Section 7 describes simu-
lation of the PRE. Section 8 summarizes the paper.

2. Motivating Applications of the PRE

Potential applications of the PRE include but are not lim-
ited to:

1. Remote tours of landmarks and facilities that are dis-
tant in place and/or time. For example, a user could
climb the steps of the Great Pyramid, hike the Great
Wall, navigate through a remote factory assem-
bly plant, walk through a famous golf course (po-
tentially in concert with playing a simulated golf
game), or tour Ancient Rome as it once was. Ver-
sions of such an application are already available in
programmable treadmills in which elevation changes
are simulated by adjusting the steepness of the tread-
mill.

2. A climbing wall in one’s home entertainment room.
The PRE could be programmed with any number of
difficult or famous climbs and traverses, such as scal-
ing Mt. Everest or Aconcagua.

3. Interactive gaming in one’s living room. The PRE
could be programmed to simulate a virtual environ-
ment, say a subterranean cave that never existed, a
fairy tale castle, or a futuristic city.

4. Assistive technology. A scaled down version of this
system the size of a box could be used as assistive tech-
nology, allowing a blind person to perceive 3D depth
and shape.

5. Search and Rescue Training on a large scale. The scale
of the PRE could be extended to the size of a build-
ing or beyond. Obstacles and rooms would be created
on demand. Firefighters could be trained to navigate
through terrain that keeps changing, i.e. obstructions
could appear in front of and/or behind the trainee, em-
ulating a real fire that blocks the way forward and/or
the exit behind. Different members of a fire team could
be distributed across different rooms in the PRE while
simultaneously facing a sudden failure scenario that
requires collective team action to overcome. Police
SWAT teams could be trained to navigate through in-
teriors in which a large number of rooms could be
formed and changed in fast succession with the rais-
ing and lowering of physical pixel rods without a need

for the team to pause for the rooms to be rearranged.
Slipperiness of floors could be adjusted on the fly, to
simulate icy conditions, wet floors, etc.

6. If such a building-scale PRE is filled with water, then
it would be possible to train divers to navigate through
sunken ships.

7. Combat training, especially in urban areas. A PRE
would allow soldiers to experience how to navigate ur-
ban terrain that is created on demand to simulate any
number of dangerous scenarios. Just as in immersive
flight simulators[12], parameters could be changed
suddenly to test for a critical failure scenario, e.g. force
a foot to slip during a critical portion of a reconnais-
sance mission. A more benign version of this appli-
cation would enable paintball and lasertag games in
maze-like buildings whose layouts are created on de-
mand and capable of morphing during a battle.

8. Rapid prototyping of 3D objects. The PRE can be used
to quickly create rough injection molds. The outer shell
of the mold would be formed by the PRE, and would
then be injected and dried. This enables quick approx-
imation of the desired 3D shape, albeit with pixelated
surfaces, which may be appropriate for certain types of
rapid prototyping.

9. Wall art and furnishings. Arbitrary surfaces could be
rendered on a wall on demand, e.g. mosaic patterns,
carvings, sculpted art, even a human face, and more
simply, shelves.

These examples illustrate a variety of exciting appli-
cations of PREs. In addition, there are several interesting
properties of a PRE that emerge. When the scale of a PRE
is extended beyond the size of a living room, then the PRE
can be used to conduct team-based training exercises. The
real-time adaptability of the PRE enables paths and layouts
to change during an exercise, simulating blocked passages
and new-found obstacles to navigate around. Also, the cen-
tral “atmosphere” of a PRE can be injected with water or
another substance to enable new applications of a PRE.

3. Advanced Capabilities of the PRE

To enhance the realism of large scale PREs, it would be
beneficial to hierarchically embed PREs within PREs. This
would be useful, for example, in creating protrusions from
walls in the interior of a PRE. Otherwise, only the outer
edges of a PRE would provide any emulation of non-flat
walls, while all interior walls would be flat. The same con-
cept can be scaled down to a room-sized PRE to enable, for
example, the creation of a table within a PRE. This would
be accomplished by embedding a PRE-like “object” within
a PRE whose surfaces are all pixel-based and are capable

3



Figure 4. A PRE object within a PRE enables
the rendering of shapes in the interior of a
PRE.

of extending into the PRE. A limited number of such ob-
jects would be embedded in the PRE and could be raised
and lowered into/out of the PRE much like a single pixel.
However, a PRE object would displace a large number of
pixel rods. Once raised into the PRE, the object’s various
surfaces could be extended out into the room. This capa-
bility is shown in Figure 4. A similar mechanism would be
used to create a window in a wall. Telescoping physical pix-
els would extend the range of pixels beyond the displace-
ment of the object.

Another example of hierarchy involves rod layout and
manipulation. The floor of the PRE could be segmented into
plates. Each plate would be independently controllable in
terms of angle and height by a spherical joint and/or three
rods, as shown in Figure 5. Each plate would contain its own
grid of rods. Such a system would enable rendering of pix-
els at angles other than perpendicular to the ground plane.
Such a system may allow for more convenient or faster ma-
nipulation of groups of pixels on a plate granularity. Paral-
lels on the hierarchy can be made with computer graphics,
in which surfaces are shown coarsely as a series of poly-
gons, while fine details are drawn by texture mapping. Here,
plates and large rods are analogous to polygon-scale manip-
ulation, while small rods on the plate are equivalent to the
texture map.

Another capability of the PRE enables zooming into and
out of physical scenes. In an Alice-In-Wonderland effect,
surfaces and shapes in the room could be quickly scaled
larger or smaller in comparison to the user.

We expect that sensing technology will play an impor-
tant role in the PRE to provide feedback of user actions.

Figure 5. Plate articulation based on mount-
ing a plate on three rods.

For example, if a user sits in a rendered throne, the seat
of the throne could become contoured to fit the user. If a
user walks on certain pixels representing swampy or sandy
ground, the pixels could give way as the user steps on them.
The user’s location and/or orientation within the PRE also
should be known.

As mentioned earlier, PREs are capable of translating
objects, in particular human users, by raising and lower-
ing rods while also changing their tips’ coefficients of fric-
tion. Other objects that are placed in the PRE can also be
translated, e.g. a soccer ball or furniture. In addition, PREs
can deform the ground underneath objects, causing tilting
or other motion.

In addition, the PRE system is complementary to other
technologies such as immersive head-mounted displays and
interactive user interfaces such as the Nintendo Wii [13].
It would be advantageous to combine the PRE with such
technologies to enhance the Holodeck-like experience. If
the PRE is to be viewed directly without the assistance of
a head-mounted display, then color realism could be en-
hanced by emitting light of appropriate colors through the
tips of translucent rods, thereby painting in effect a mosaic
on top of a 3D surface.

Networking together distributed Holodecks would be an-
other facet of team-oriented training, where individuals in
the team need not all be in the same place. Instead, individ-
uals in geographically separate PREs can be networked to-
gether to train as a team, even though each individual’s PRE
only renders a local physical view as seen by that user. The
graphical views of each user would also need to be coordi-
nated, as in a cooperative multi-player game.

4



Figure 6. Catoms forming 3D face [27].

4. Related Work

Intel’s Dynamic Physical Rendering (DPR) [1] is a vi-
sion of using small physical elements called catoms, e.g.
balls, to create arbitrary 3D shapes as seen in Figure 6.
Catoms are able to orient among themselves in arbitrary
positions. The DPR concept is similar to micro-robot en-
sembles and programmable matter [2]. DPR is in its early
stages, with the current prototype using two cylinders with
electromagnets on them to achieve orientation, but work is
under way for a more advanced prototype. We view PRE
technology as able to render large surfaces quickly and with
modest computational cost, making it a natural complement
to DPR technology. Shapes internal to a PRE, such as a ball,
would be rendered using DPR, while other shapes, such as a
table, could be a hybrid combination of PRE rods, PRE ob-
jects, and DPR rendering.

The proposed PRE system relates to Solid Freeform Fab-
rication (SFF) [22], [21], [23], as 3D objects could be ren-
dered by the PRE to assume the form of a desired object
surface. Moldable material could then be injected into the
PRE. In this way, the PRE could provide a rapid but ap-
proximate method to mold and print 3D objects.

Omnidirectional treadmills [3] give a user the impres-
sion of walking through an effectively unlimited environ-
ment even though they are physically staying in the same
place. The Sarcos treadmill [6] combines an angled tread-
mill with a mechanical tether and a CAVE-like immersive
graphical interface. The angle of inclination can be con-

trolled. The mechanical tether presents forward resistance
and sideways pressure to the user. There are a variety of
limitations to this approach. The bundling of the user to the
tether limits locomotion, i.e. kneeling and rolling are diffi-
cult to realize. On the other hand, a PRE is designed to per-
mit full human motion. Also, our PRE-based Holodeck is
designed to enable fine-grained realization of irregular ter-
rain and slopes that are not flat, whereas the treadmill ap-
proach is largely limited in what it can emulate by its sin-
gle planar surface. The PRE also enables geographically
differentiated emulation of varying degrees of slipperiness,
which is not addressed by the treadmill approach. Both the
PRE and treadmill approaches may benefit from sharing of
ideas. For example, we expect to incorporate lessons from
the treadmill on how to reposition a user as imperceptibly
as possible. In addition, the PRE could be augmented with
rod-based treadmills, i.e. a treadmill whose surface consists
of a grid of rods is inserted into a PRE. One way to real-
ize such a treadmill is to subdivide the surface into sepa-
rate plates. Conversely, treadmills may benefit from incor-
porating PRE technology, e.g. so that the slipperiness of the
surface can be varied with fine granularity as the treadmill
rolls.

An alternative approach that gives a user the physical il-
lusion of walking arbitrary distances is offered by devices
like the GaitMaster [4], shown in Figure 7. The device has
two pedestals or pedals on which a user stands, one for each
leg. The user’s complete weight is supported by the two
pedals. The pedals move with the user’s legs, and the com-
bined motion of the pedals keeps the user in place while
giving the user the illusion of walking forward, e.g. as the
user is walking forward, one pad is moved forward for the
front foot, and another pad is moved backwards. In addition,
the platform is mounted on a spherical joint that moves the
same way that the user does. This type of device confines
human locomotion and does not fully support our objectives
for the PRE, namely the ability for a human user to move
freely through the PRE, e.g. by laying down, kneeling or
rolling. As with treadmills, cross-fertilization of ideas may
benefit the PRE both in terms of learning how the user’s
sense of balance is affected by constant repositioning in the
GaitMaster[5] and in how lowering/raising the pedals can
simulate mashy ground and clay. Conversely, pedals on the
GaitMaster could be modified with the PRE pins to present
local textures, a concept which we term “porcupine pedals”.

Augmented reality systems combine physical objects
with computer generated imaging [7]. Many concepts from
augmented reality such as helmet-based split-view immer-
sive environments [7] are quite complementary with the vi-
sion of physically rendered environments. Depending on
the application, we envision that users navigating through a
PRE can be equipped with helmet-mounted immersive dis-
plays. The PRE provides computer-controlled rendering of

5



Figure 7. GaitMaster keeps a user’s legs on
the movable pedals [28].

physical surfaces, walls, steps, hills, and deformable ojbects
on demand in a coordinated fashion with what the user is
viewing in the head-mounted display. In some cases, the
user’s entire vision may be immersed by the helmet, while
the PRE provides the realistic physical feedback or “feel”
of the surfaces.

The designers at amusement parks, e.g. Imagineers at
Walt Disney [19], as well as the designers of sophisticated
stage sets [18] explore effects that are distantly related to
the PRE-based concepts that we are proposing. Objects and
props rise from below to the stage floor or descend from the
ceiling in electromechanical coordination. However, these
objects are typically quite specialized and fixed in form be-
forehand, unlike the PRE where much more universal sur-
faces and forms can be rendered.

Haptic interfaces [20] allow computer stimulation of the
user’s sense of touch. This approach shows a lot of promise
for allowing the perception of touch in the environment, but
haptic interfaces are not generally not concerned with loco-
motion in an environment. Our work is complementary in
that it is likely that we will need to integrate concepts from
haptic interfaces in order to provide textures that give the
right degree of slipperiness or roughness.

Finally, somewhat related work is a Braille enabled ter-
minal [17]. The system that we are proposing could enhance
a Braille terminal, as it would not only enable reading of the
Braille alphabet, but would also enable perception of new
3D shapes.

5. System Architecture

To realize the vision of a Holodeck through physically
rendered environments, we intend to employ a high-level
system architecture such as depicted in Figure 8. The archi-
tecture is similar to the flow of data through graphics-based
rendering engines, and consists of both a software compo-

nent for issuing commands to control the displacement of
the rods, and actuation technology for raising/lowering the
rods. Building such a system will require substantial inno-
vations both in computer science and electro-mechanical
engineering. We describe in Section 6 the structure of the
software computer control, modeling and rendering system.
As a means to prototype and test various concepts prior to
building complex and expensive hardware, we describe a
simulation environment in Section 7 that renders pixel rods
and their motions in a virtualized graphical world, but as if
in a real PRE, e.g. the inertia of rods is factored into the sim-
ulation.

Figure 8. System Architecture

The system begins by creating a 3D model in software of
the environment to be rendered. The 3D model must contain
physical characteristics of surfaces being modeled, includ-
ing shape, texture and slipperiness. From the 3D model, we
extract the sequence of actions needed to render the physical
surfaces in the environment. From the same 3D model, we
can generate both graphical images that are shown within
a user’s helmet-mounted display as well as corresponding
physical terrains that are rendered within the PRE, thereby
providing an even deeper sense of immersion. Thus, two co-
ordinated rendering paths emerge from the same core 3D
model.

The example in the figure demonstates deformation of

6



only one plane, e.g. the ground plane, but the concept is
straightforward to extend to deforming other edges of the
room beside the floor, e.g. ceiling and walls. Thus, the phys-
ical rendering engine may be drawing six different surfaces,
or even more if internal PRE objects are factored into the
scene.

The Graphics Processing Unit (GPU) normally takes
specific graphics commands and renders them on screen.
The GPU renders specific types of compute-intensive com-
mands more quickly than generic processors. The next sec-
tion proposes ways to adapt GPUs to support real time phys-
ical rendering.

6. Basis of Software Control

This section describes the basis of software control of
the grid of rods. The exact control algorithms depend on the
larger system in which the PRE-based Holodeck is imple-
mented. In the following discussion, we assume for simplic-
ity that there is one planar plate on the floor, and that its pins
are perpendicular to the plate, rising up from the floor.

What are some of the major technical challenges faced
in software control of the PRE?

• How do we render a physical surface from a standard
3D graphical model?

• How do we integrate physical limitations of the rods
into a standard 3D graphical model?

• How do we minimize the number of changes to the ren-
dering engine in order to realize software control of the
Holodeck?

• What is the best way to move the rods to give the most
realistic impression of natural motion to the user?

• How do we factor the user’s safety into the physical
rendering decisions?

The first three questions are addressed in the following
subsections.

6.1. Z Buffer and GPU Usage

Our first observation is that the Z-Buffer found in typ-
ical graphical systems can be exploited to help us identify
and render physical surfaces. In a standard graphical envi-
ronment, where a viewer is looking at a rendered 3-D scene,
the Z-Buffer contains the distance of each pixel from the
viewer. If we position the point of view of the user to look
up from the bottom of the scene, and use orthogonal projec-
tion to render the scene, then the Z-Buffer would contain the
distance of each pixel from the floor, i.e. the Z-Buffer con-
tains the height of each rod on the physical surface that we
desire to render. Given a standard 3D graphical model, we
need only specify the point of view of the user as being from

the bottom looking up in an orthogonal projection, and read
out the values from the Z-buffer, and then raise each rod in
the PRE to the appropriate height from the floor.

An important outcome of this observation is that it al-
lows us to use hardware acceleration available in conven-
tional GPUs to calculate rod position, as well as standard
APIs like OpenGL [8] for controlling this calculation.

6.2. Adapting to Physical Limitations of the Rods

Each rod is a physical entity and subject to physical laws
of inertia. While the Z-Buffer approach can help us calcu-
late the final position of the rod, it does not account for how
the rod reaches that final position from its current position.
The rod itself may have a response curve for its position
that looks like Figure 9. How can we integrate these physi-
cal limitations into the motion of each rod?

Figure 9. One possible function for describ-
ing position of a rod versus time.

Our solution is to utilize the programmable hardware ac-
celeration available in today’s graphics cards. Modern con-
sumer GPUs have programable pixel (fragment) shaders, al-
lowing us to perform per pixel calculations [9]. We would
perform quantization of the function from Figure 9 into a
1D texture, and then pass to the fragment shader that tex-
ture and a uniform (constant for frame) variable represent-
ing the interpolation step that we want the fragment shader
to perform. The fragment shader would then perform the
necessary interpolation, store the intermediate position in
the color buffer or intermediate texture, and actuate the pixel
rod with the appropriate displacement.

6.3. Detailed Rendering Challenges

We present in this section special cases that illustrate
some of the more detailed challenges we will encounter in
adapting existing graphics pipelines to realize physically
rendered environments. As the examples in the previous

7



subsections show, our intent is to leverage as much as practi-
cable existing graphics pipelines in both software and hard-
ware to realize physical rendering of surfaces and objects.
In the following, we use OpenGL-based image generation
for our examples, but the same techniques and generation
apply to the other graphic APIs (e.g. DirectX [14]).

6.3.1. Fixed OpenGL Pipeline Rendering Only the
Ground Plane The simplest case is the situation in which
a graphics program is rendering a single surface or ground
plane with no objects resting on that surface (the hu-
man user stands in the PRE but is not rendered). Such a
scenario could be easily adapted to the Holodeck environ-
ment by using the same OpenGL commands to render an
environment both on the graphical system and the physi-
cal Holodeck system. The user would be in the same po-
sition for both environments, though the clipping planes
would differ. Clipping planes for physical rendering need
to be set to the boundaries of the Holodeck environ-
ment or room. However, the perspective rendered from the
user’s view, e.g. the user is wearing a head-mounted dis-
play, would be given as that between the near and the
far clipping plane, as in Figure 10. If any optimiza-
tions (beyond setting of the near clipping plane to be in
front of the user) have been made in the graphics pro-
gram to discard geometry between the viewer’s position
and the near clipping plane, they need to be removed in or-
der for the Holodeck environment to correctly render
the full physical scene. For example, if the user is look-
ing forward, but there is a chair behind the user, then
a user should be able to back into and bump the ren-
dered chair, even though it is not shown in the user’s hel-
met view, due to the user’s orientation. In this case,
the physical rendering should capture and draw all sur-
faces within the physical clipping planes, even though
they may not appear in the graphical view. In this exam-
ple, the near clipping plane would be the floor. In gen-
eral, the clipping planes should be reconfigured so the
whole area around the user is rendered. If there are no op-
timizations made but the near clipping plane is in front
of the user, it should be moved (in orthogonal projec-
tion only) to encompass the point on which the user is
standing.

An issue that could occur in this situation is that the
physical height of the user who is in the Holodeck might
be different than the “assumed height” of the virtual user
for which a graphical image is rendered. For example, the
image might be generated for a user that is 5 feet high,
while the physical user is 6 feet tall, causing what we dub
a “Gulliver effect”, where ground features under the user’s
feet are either smaller or larger in the physically rendered
Holodeck than what the user sees on the helmet screen. We
can address this issue of matching the physical and graphi-
cal scales in two ways: the graphical scale can be held fixed,

Figure 10. As the Holodeck PRE needs to ren-
der the complete physical area around the
user, the adapted graphics program should
not clip the immediate area around the user
even if it is not visible to the user.

and the physical scale can be adjusted to match the user’s
height, e.g. if the graphical world is rendered from the per-
spective of a 6 foot human, then the 5 foot user who is peer-
ing over the top of a 6 foot high graphical wall should have
the wall physically rendered to 5 feet to receive the correct
tactile feedback; alternatively, the graphical scale can be ad-
justed to match the actual height of the user, while keeping
the physical scale constant, e.g. for a 5 foot tall user, the
graphical view is adjusted so that it is rendered from the 5
foot tall perspective, and a wall that is 6 feet high in the
physical world will remain as 6 feet high, regardless of the
height of the user. Future research will determine which of
these is the best approach.

6.3.2. Fixed OpenGL Pipeline Complex scenes with ob-
jects resting on surfaces pose a more difficult challenge in
terms of adapting OpenGL commands to physical render-
ing of surfaces. In the fixed OpenGL pipeline, final render-
ing depends only on the rendering APIs that are called for
the program, and it is known how the picture would look
based only on those API calls (as opposed to how the picture
would be transformed based on programmable shaders [9]).
One problem that exists in this environment is that some ob-
jects residing on the ground plane, e.g. the ball in Figure 11,
could not be easily rendered in the Holodeck environment.

This problem is effectively one of distinguishing the
ground plane from the objects on the ground plane. For this
to be done, we need the help of the programmer, who must
annotate the OpenGL program so that we know which ge-
ometry parts are the ground plane only, and which ones are
not.

We believe the modification needed to help us distin-

8



Figure 11. Ball on the ground - this image
could not be easily rendered in the Holodeck,
as the top surface of the ball could be ren-
dered, but not also the gap between the ball
and the ground.

guish between the ground plane and objects resting on its
surface is simple, and effectively is just the addition of two
API commands that would identify the beginning and the
end of the code section within which all rendered geom-
etry are included as part of the ground plane. Only these
OpenGL commands will be physically rendered into the
Holodeck’s ground geometry. An example would resemble
the following:

... Draw elements that are not
part of the ground plane ...

DrawBall();

// All subsequent drawing appears both
// on screen and in physical Holodeck
hglGroundBegin();
... all geometric objects that are part

of the Holodeck’s ground plane ...
hglGroundEnd();

6.3.3. Bump Mapping, Displacement Mapping and the
OpenGL Programmable Pipeline Bump mapping [26] is
a technique of simulating surface detail by varying the sur-
face normal on a per pixel basis to create the impression
of small 3D details on the surface of an object. Displace-
ment mapping [25] is displacement of the actual geometric
points on the surface of the object, mostly done to simu-
late fine detail.

Both of those techniques share a problem that the actual
geometry of the surface passed to the GPU does not contain
the fine detail. As a result, if the ground is bump mapped, it
would look rough on the graphical screen, but smooth when
physically rendered in the Holodeck, given the techniques
applied so far.

Fortunately, as long as the depth map or Z buffer at the
point is correct, bumps would be correctly rendered. A simi-
lar observation applies to displacement mapping. So as long
as we use a programmable fragment shader to vary the
depth buffer at a pixel to simulate bumps, the Holodeck en-

vironment could render bump and displacement mapping
surfaces.

From that prospective, the Holodeck integrates well with
programable shaders. The main problem that exists with
programable shaders is that if the depth buffer at a physical
pixel does not correspond to the depth value of the graphi-
cally rendered pixel (as might be the case in some parallax
mapping [25] implementations), the Holodeck would not
render the correct surface. The solution then is to modify the
shader to synchronize depth values at a physical pixel with
the value corresponding to the graphically rendered pixel.

6.3.4. How to Perform Effective API Call Interception
One solution for realizing effective API call interception for
the previously described techniques is to modify the graph-
ics driver to issue rendering calls both to the graphic card
and the physical Holodeck system. The problem with this
approach is that it requires access to the source code of the
driver, which is typically not available. Even worse, GPU
hardware is typically not documented. That means that it is
in practice often impossible to write a driver from scratch.

That leaves two possibilities:

1. Wrap OpenGL calls in a custom library that would is-
sue required double calls. This approach requires ex-
tensive modification of the rendering code in programs
that are using OpenGL.

2. Recognize that this interception is effectively aspect-
oriented [10] and employ a system like AspectC++
[11] to perform interception.

We prefer aspect-based interception. The code for such
an aspect is shown below:

around any OpenGL call
if Holodeck_affected

issue Holodeck rendering

proceed

6.4. Slipperiness Simulation

Our discussion thus far has related to how to control dis-
placement of the rod. When it comes to controlling slipper-
iness of terrain, typically no information presented to the
OpenGL pipeline for the purpose of scene rendering could
help us to determine the slipperiness of the surface.

Fortunately, we can encode slipperiness of the surface in
the texture, and then use the fragment shader to vary slip-
periness of each ball on top of each rod in accordance with
the value of “slip texture” for that pixel. Implementation of
this is fairly straightforward in the fragment shader.

Although the fragment shader portion of the slipperi-
ness calculation would not be scene specific (so the same
shader could be used for all user programs), slipperiness of

9



terrain is obviously scene specific. As a result, a user pro-
gram would need to be modified to pass additional texture
for each surface on which a user is standing. This is typi-
cally not a problem unless the number of already used tex-
tures is at the limit of the texturing capabilities of the card.

Our approach is to require the program to be modified
to provide surface slipperiness information. That informa-
tion could be passed in the form of the coefficients of fric-
tions in a texture map equivalent, that then would be used by
the Holodeck’s fragment shader. In the long run, material li-
braries in the modeling packages artists are using to specify
look of the objects [15] (and which typically include mul-
tiple texture maps) could be extended to include a slipper-
iness map of the surface, too. This is a rich area for future
work, as it is unclear whether the coefficient of friction of
the material correctly captures all characteristics that are re-
ally perceived as slipperiness, i.e. for ice it is likely that the
coefficient of friction is an accurate representation of the
perceived slipperiness of the terrain, while for gravel the
perceived slipperiness is likely to be higher than the coeffi-
cient of friction of stone and sand would indicate.

6.5. Integration with Rendering Engines

Although the Holodeck integrates well with the multiple
parts of the rendering pipeline , its integration with the com-
plete rendering engine [24] might be more involved, as mul-
tipass rendering techniques, e.g. shadow maps [25], or mul-
tipass rendering using shaders [24] will not reproduce re-
alistic Holodeck pictures even if all OpenGL calls are in-
strumented. This is because the results of some passes, such
as for shadow map generation [25], are not directly drawn
in the scene but are used for intermediate steps in render-
ing the final scene.

To resolve this problem, it is necessary to modify the ren-
dering engine so that calls that are not intended to affect the
screen buffer are not rendered in the Holodeck. There are
three approaches to achieve this:

1. Change Holodeck interception so that instead of the in-
terception of the OpenGL calls in real time, final val-
ues of the OpenGL depth buffer when all rendering is
done are read. If the depth buffer is a realistic repre-
sentation of the surface of the environment, then this
technique would be all that is needed. In full rendering
engines, this is rarely the case in practice, e.g. bump
mapping doesn’t update the depth buffer to simulate
real slipperiness of the surface.

2. Exploit the possibility that passes that aren’t to be ren-
dered might be fairly easy to identify, and mark each
pass as ”Holodeck compatible” or not, similar to the
earlier approach of annotating the graphics calls to
identify which applied to the ground plane. In this case,

we would intercept OpenGL calls only if they apply to
the Holodeck.

3. While the previous two approaches involve modest
changes to the pipeline, they are not comprehensive.
For the best results, the rendering engine itself may
need to be changed to account for the Holodeck PRE.

In addition to the changes in the graphic engine neces-
sary to make it compatible with the Holodeck, it is likely
that the Holodeck would impact how code of the rendering
engine is written. In particular, rendering calls that are GPU
intensive are often interleaved with rendering calls that are
CPU intensive [24]. The PRE-based Holodeck would intro-
duce one additional area where interleaving could be ex-
ploited for enhancing total system performance. How much
advantage is to be gained in interleaving the Holodeck’s
physical rendering code with graphical rendering, and what
are the best ways to do it are areas of future research.

7. HoloSim - Simulating the PRE-based
Holodeck

It is our intention to construct a simulator as a first step
towards realizing this PRE system. This HoloSim approach
is not only a cost saving measure, but also the simulator
is likely to be able to address many of the open research
questions before the expensive task of building the physi-
cal electro-mechanical system.

Figure 12. A screen capture of the HoloSim
rendering a surface with physical rod-like
pixels, in this case two thrones facing each
other.

The HoloSim is intended to be able to answer many of
the following questions:

1. How would the physical system look like without a
helmet? Would running the simulator in a CAVE [16]

10



provide insights on how a completed physical system
would look like?

2. The simulator would be enough to demonstrate fea-
sibility of the proposed Z buffer and fragment shader
based control approach.

3. The simulator would provide additional insight as to
the best software control algorithms for rod move-
ment. Should we choose algorithms that allow rods to
reach their final position the fastest? Or algorithms that
would minimize discontinuity between roads, to mini-
mize sharp edges in simulator?

4. Fail-safeness approaches could be partially tested in
simulator environment, as well as the impact on phys-
ical safety.

5. Finally, the majority of the simulator code could be
used as a basis for the software control module of the
physical system once it is realized.

Details of the design and implementation of the simula-
tor are beyond the scope of this work. Figure 12 illustrates
output from our current HoloSim.

8. Summary

This paper has presented an ambitious original concept
for realizing the vision of a Holodeck through physically
rendered environments (PREs), i.e. computer controlled ac-
tuation of a grid of physical pixel-like rods wherein the dis-
placement of each rod can be increased or decreased. The
result is the ability to render arbitrary physical surfaces and
terrains. In addition, such a PRE would be able to support
a human user, who will be able to walk over these surfaces,
and roll and kneel as well. The aim is to further achieve
an effect whereby subtle displacements would re-center a
user imperceptibly, to give the perception of infinite dis-
tance. The coefficient of friction, or slipperiness, of the tip
of each of rod would be computer-controlled, to give the
user different impressions of slipperiness.

We have presented how we believe that software control
of a PRE-based Holodeck can be achieved using the tech-
nology of today. We have described methods for adapting
existing graphics pipelines, such as OpenGL software and
GPU accelerators, so that 3D graphical models of environ-
ments can be used to render physical surfaces.

We proposed HoloSim as a simulation environment that
mimics the rendering actions of a true PRE. HoloSim gives
us the opportunity to evaluate the most promising render-
ing approaches prior to building the full physical system.
HoloSim will incorporate the effects of physical limitations
of the rods, e.g. inertia. We can then study the effect of dif-
ferent approaches to achieve the most realistic rendering.
We believe the HoloSim, suitably modified, will grow into

the software front end for controlling the hardware back
end.

Finally, this is still early work that is presenting an am-
bitious concept. We have raised some of the technical chal-
lenges, but they are not meant to be exhaustive. For exam-
ple, we have not addressed issues of reliability, safety, or hu-
man perception of motion. We have only briefly introduced
some of the electromechanical issues. Graphical issues such
as physical aliasing also were omitted. Our hope is that this
white paper has raised interest in the idea of computer con-
trollable rendering of physical terrains and environments,
and spurs new research and development towards realizing
the vision of the Holodeck.

References

[1] Intel Corporation: “Dynamic Physical Rendering”, avail-
able at http://www.intel.com/research/dpr.htm, visited on
September 1st, 2007.

[2] S. C. Goldstein, J. D. Campbell, T. C. Mowry: “Pro-
grammable Matter”, Invisible Computing, June 2005, pp.
99-101.

[3] R. P. Darken, W. R. Cockayne, D Carmein: “The Omni-
Directional Treadmill: A Locomotion Device for Virtual
Worlds”, ACM Symposium on User Interface Software and
Technology, 1997, pp. 213-221

[4] H. Iwata, H. Yano, F. Nakaizumi: “Gait Master: A Versa-
tile Locomotion Interface for Uneven Virtual Terrain”, Pro-
ceedings of the Virtual Reality 2001 Conference (VR’01),
2001, pp 131, ISBN:0-7695-0948-7

[5] H. Yano, K. Kasai, H. Saito, H. Iwata, “Sharing Sense of
Walking With Locomotion Interfaces”, International Jour-
nal Of HumanComputer Interaction, 17(4), 447462.

[6] J.M. Hollerbach, Y. Xu, R. Christensen, S.C. Jacobsen:
“Design specifications for the second generation Sar-
cos Treadport locomotion interface”, Haptics Symposium,
Proc. ASME Dynamic Systems and Control Division,
DSC-Vol. 69-2, Orlando, Nov. 5-10, 2000, pp. 1293-1298.

[7] O. Bimber, R. Raskar: “Spatial Augmented Reality: Merg-
ing Real and Virtual Worlds”, A K Peters, Ltd. (July 31,
2005)

[8] D. Shreiner, M. Woo, J. Neider, T. Davis: “OpenGL(R)
Programming Guide: The Official Guide to Learning
OpenGL(R), Version 2 (5th Edition)”, Addison-Wesley
Professional; 5 edition, August 1, 2005, ISBN:978-
0321335739

[9] R.J. Rost: “OpenGL(R) Shading Language (2nd Edition)”,
Addison-Wesley Professional; 2 edition, January 25, 2006,
ISBN: 978-0321334893

[10] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J. Loingtier, J. Irwin, “Aspect-Oriented Program-
ming, Proceedings of the European Conference on Object-
Oriented Programming, 1997, vol.1241, pp.220242.

[11] O. Spinczyk, A. Gal, W. Schrder-Preikschat, “AspectC++:
An Aspect-Oriented Extension to C++”, Proceedings ofthe
40th International Conference on Technology of Object-

11



Oriented Languages and Systems (TOOLS Pacific 2002),
Sydney, Australia, 2002

[12] J. M. Rolfe (Editor), K. J. Staples (Editor): “Flight Sim-
ulation (Cambridge Aerospace Series)”, Cambridge Uni-
versity Press; Reprint edition (May 27, 1988), ISBN: 978-
0521357517

[13] Wikipedia entry on Wii, available at http://en.wikiped
ia.org/wiki/Wii, visited on August 23rd, 2007.

[14] Microsoft Corportation: DirectX Resource Center, avail-
able at http://msdn2.microsoft.com/en-us/xna/aa937781.a
spx, visited on August 23rd, 2007.

[15] Blender Material Library, available at http://www.blende
r.org/download/resources/#c2511, visited on August 23rd,
2007.

[16] Wikipedia entry on CAVE, available at http://en.w
ikipedia.org/wiki/CAVE, visited on August 23rd, 2007.

[17] List of commercially available Braille terminals, avail-
able at http://www.tiresias.org/equipment/eb7.htm, visited
on February 25th, 2007.

[18] Wikipedia entry on Stagecraft, available at
http://en.wikipedia.org/wiki/Stagecraft, visited on Febru-
ary 25th, 2007.

[19] Wikipedia entry on Walt Disney Imagineering, available
at http://en.wikipedia.org/wiki/Walt Disney Imagineering,
Visited on February 25th, 2007.

[20] Thomas H. Massie and J. K. Salisbury: “The PHANTOM
Haptic Interface: A Device for Probing Virtual Objects”,
Proceedings of the ASME Winter Annual Meeting, Sym-
posium on Haptic Interfaces for Virtual Environment and
Teleoperator Systems, Chicago, IL, Nov. 1994.

[21] E. Malone, H. Lipson, “Freeform Fabrication of Complete
Devices: Compact Manufacturing for Human and Robotic
Exploration”, AIAA Space 2006, San Jose, CA, 19-21 Sept
2006, AIAA 2006-7406.

[22] “What is Solid Freeform Fabrication?”, available at
http://www.msoe.edu/reu/ssf.shtml, visited on May 5th,
2007.

[23] J.J. Beaman, John W. Barlow, D.L. Bourell, R.H. Craw-
ford, H.L. Marcus, K.P. McAlea, “Solid Freeform Fabrica-
tion: A New Direction in Manufacturing”, Springer; 1 edi-
tion (December 31, 1996), ISBN: 978-0792398349.

[24] W. Engel (editor): “ShaderX3: Advanced Rendering with
DirectX and OpenGL”, Charles River Media; 1 edition
(November 2004), ISBN: 978-1584503576, pp. 499-519.

[25] A. Watt, F. Policarpo: “Advanced Game Development with
Programmable Graphics Hardware”, A K Peters, Ltd. (Au-
gust 1, 2005), ISBN: 978-1568812403.

[26] J. D. Foley, A. van Dam, S. K. Feiner, J. F. Hughes: “Com-
puter Graphics: Principles and Practice in C”, Addison-
Wesley Professional; 2 edition (August 4, 1995), ISBN:
978-0201848403.

[27] Reprinted with permission from http://www.pittsburgh.int
el-research.net/dprweb/.

[28] Reprinted with permission from http://intron.kz.tsukuba.a
c.jp/gaitmaster/gaitmaster2.jpg.

12


